
BARATAUD, M. 2012.

# Ecologie acoustique des chiroptères d'Europe.

Identification des espèces, études de leurs habitats et comportements de chasse.

Biotope, Mèze ; Muséum national d'histoire naturelle, Paris (collection Inventaires et Biodiversité), 344 p.



1<sup>ère</sup> EDITION; février 2012

**MODIFICATIONS** 

mise à jour datée du 24 février 2023

### Les parties à modifier sont en rouge, les corrections en bleu.

#### Livre:

Graphiques à réactualiser à partir des nouveaux fichiers Excel « Identification... »

- ❖ tout le livre (vérifier tableaux et encadrés) et PDF de légende des sons : remplacer M. oxygnathus par M. blythii (le nom vernaculaire « Petit murin » reste inchangé) ; corriger l'accord (à mettre au masculin en remplacement du féminin) des termes associés au mot « trille ».
- p. 11 : dernière ligne : supprimer le « a » en début de ligne.
- ❖ p. 12 : alinéa « Ingemar Alhén », ligne 3 ; corriger : « ... puisque je ne l'ai jamais rencontré, et que nos échanges épistolaires datent seulement de l'automne 2014. ».
- ❖ p. 12 : alinéa « Grégory Beuneux... », ligne 3 ; corriger : « ... ces joyeux compagnons furent des guides efficaces lors de mes enregistrements de N. lasiopterus... ».
- ❖ p. 12 : alinéa « André Brosset » en bas de page, ligne 2 ; corriger : « ... l'Ancien de du Nouveau Mondes, et... par « ... l'Ancien et du Nouveau Mondes, et... ».
- ❖ p. 13 : alinéa « Daniel Demontoux », ligne 3 ; corriger : « ... réalisé ensemble dans cette zone durant quatorze années... ».
- ❖ p. 13: insérer entre les paragraphes « Philippe Favre » et « Pascal Giosa » le paragraphe suivant : « Michel Genest : de 1990 à 1995 Michel a été un compagnon fidèle et une aide précieuse lors des nombreux périples en France et en Suisse pour courir de nuit après des chauves-souris équipées de capsules luminescentes ; beaucoup des enregistrements effectués à cette période ont été facilités par sa présence amicale ; ».
- ❖ p. 14: insérer entre les paragraphes « Herman Limpens » et « Thérèse Nore » le paragraphe suivant : « Jean-Pierre Malafosse : notre rencontre en 1985 a donné le coup d'envoi à une relation fusionnelle ; frère de nature, Jean-Pierre a influencé ma manière d'être et de penser naturaliste ; il est un des autodidactes les plus impressionnants que je connaisse, par la somme de connaissances accumulées, le sens de l'observation et celui de l'analyse ; il a accompagné les balbutiements des travaux acoustiques entre 1988 et 1992 ; ».
- ❖ p. 15 : avant dernier § ; insérer entre Laurent Arthur et Thomas Bernard : « Julien Barataud (l'idée du coefficient de détectabilité est née de nos discussions communes) ; » et entre Serge Mazaud et Thierry Pottier : « Mauro Mucedda (enregistrements de R. mehelyi) ; ».
- ❖ p. 17: dernier paragraphe; ajouter: « ... de plus le « nous » correspond à une convenance traditionnelle en matière de littérature scientifique, favorisant par ailleurs la modestie (et n'ayant donc rien à voir avec le prétentieux et divin « nous » de majesté!).
- p. 21 : insérer le contenu du fichier Avant-propos de la cinquième édition.
- ❖ p. 21 : légende du tableau ; modifier : « Liste des 42 espèces de chauves-souris décrites en Europe en 2007 (Dietz et.al., 2009) ; ».
- ❖ p. 21 : tableau des espèces étudiées ; ligne *Eptesicus isabellinus* ; cocher les deux cases correspondant aux colonnes « Traitées dans l'ouvrage » et « Identification acoustique possible » ; ligne *Rhinolophus mehelyi* ; cocher la colonne « Traitées dans

- l'ouvrage ». En bas de ces deux colonnes les valeurs doivent être respectivement 35 et 35.
- ❖ p. 22: § Bande de fréquences, ligne 2; remplacer: « La largeur de bande est déterminée par le différentiel entre fréquence initiale (en début de signal) et fréquence terminale (en fin de signal). » par « Pour un signal sonar FM (avec ou sans composante QFC), la largeur de bande est déterminée par le différentiel entre fréquence initiale (en début de signal) et fréquence terminale (en fin de signal) ; pour les signaux FMa/FC/FMd des Rhinolophes, la largeur de bande est comprise entre la FME de la partie FC et la fréquence terminale de la partie FMd. ».
- ❖ p. 22 : § Convexe, ligne 7 ; remplacer : « Les signaux convexes sont une spécificité de certaines espèces tropicales (familles des Emballonuridés et Molossidés (genre Molossus) notamment), alors que la quasi totalité des espèces européennes (hormis B. barbastellus, M. daubentonii, M. nattereri) produit des signaux sonar linéaires ou concaves. » par « Les signaux convexes sont une spécificité de certaines espèces tropicales (familles des Emballonuridés et Molossidés (genre Molossus) notamment), alors que la quasi totalité des espèces européennes (Rhinolophidés mis à part) produit des signaux sonar linéaires ou concaves hormis B. barbastellus, M. daubentonii et M. nattereri. ».
- ❖ p. 26 : début du § Intervalles ; remplacer : « Durée (en ms), comprise entre la fin (ou le début) d'un signal et le début (ou la fin) du signal suivant... » par « Durée (en ms), comprise entre la fin (ou le début) d'un signal et la fin (ou le début) du signal suivant... ».
- ❖ p. 27 et 29 : remplacer le mot « sonorité » par le mot « timbre » lorsque ce terme est associé à « sifflé », « nasillard », ou « multitonal ».
- ❖ p. 28 : fin de l'avant-dernier § de la partie « Répartition de l'énergie » (commençant p. 27) ; remplacer : « Ces critères de répartition de l'énergie sont incontournables dans l'identification des espèces de *Myotis*, et utiles dans celle du genre *Plecotus*. » par « Ces critères de répartition de l'énergie sont incontournables dans l'identification des espèces de *Myotis*, et très utiles dans la différenciation entre les genres *Plecotus* et *Barbastella*. ».
- ❖ p. 29 : § 2) Le rythme d'approche, ligne 14 ; remplacer : « Ces données sont précieuses à exploiter, afin d'interpréter le comportement de l'individu à identifier ; la qualité de ce comportement, associée au(x) type(s) de structure(s) rencontrées au sein de la séquence, constituent souvent un paramètre incontournable pour l'appréciation du degré de fiabilité d'une identification spécifique. » par : « L'interprétation du couple de variables "rythme et structure", particulièrement pour ce qui concerne le rythme d'approche, permet d'optimiser la fiabilité de l'identification spécifique, notamment au sein du genre *Myotis*. Ces modifications du comportement acoustique sont par ailleurs révélatrices de modifications du comportement de vol (en relation avec la variation de la distance et la nature des obstacles environnants) ; cela permet à "l'observateur aveugle" de reconstruire le micro habitat de vol d'un chiroptère et/ou son degré de curiosité, grâce à l'écoute d'une séquence de signaux sonar. ».
- ❖ p. 30: § Structure, FM, bande étroite, ligne 4; supprimer « très » dans « milieu très encombré ».
- ❖ p. 37 : lignes 1 et 2 ; ajouter : « Il en est de même pour un genre du sous-ordre des Mégachiroptères (selon Dobson, 1875 & 1878) qui regroupe les grandes chauves-souris frugivores d'Afrique et d'Asie. ».

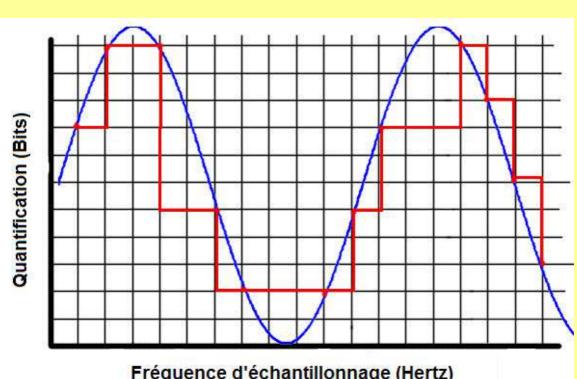
- p. 38 : § « Caractéristiques des ondes sonores » ; mettre en gras les mots en *italiques* « célérité », « fréquence », période » et « longueur d'onde ».
- ❖ p. 38: § « Caractéristiques des ondes sonores », remplacer la dernière phrase « Un phénomène qui a lieu tous les 36 du mois est défini par une fréquence inférieure au picohertz (10<sup>12</sup> hertz). » par « Une revue mise en vente tous les mois, dite mensuelle, est publiée à une fréquence de 370 nanohertz. ».
- **P. 39**: § « Propagation des sons » ; ligne 6 ; remplacer « ... est de 440 m/s et tombe à 430 m/s à 0 °C » par « ... est de 340 m/s et tombe à 330 m/s à 0 °C ».
- ❖ p. 39 : § « Propagation des sons » ; texte sous figure bas de page ; remplacer : Vitesse de propagation :  $c = 440 \text{ m.s}^{-1}$  F = 440/0.01 = 4400 Hz F = 44 Khz P = 1/4400 = 0.000227 P =  $227 \mu \text{s}$  par : Vitesse de propagation :  $c = 340 \text{ m.s}^{-1}$  F = 340/0.01 = 34000 Hz F = 34 kHz P = 1/34000 = 0.0000294 P = 29.4 us
- ❖ p. 40 : ligne 14 ; remplacer : « Un moustique ne renverra guère d'écho pour des fréquences inférieures à une quarantaine de kilohertz (longueur d'onde = 40 000 Hz/44000 m.s<sup>-1</sup> = 0,01 m soit 1 cm) alors qu'un hanneton ou une grosse noctuelle se détecteront facilement avec un signal centré sur une vingtaine de kilohertz comme celui des Noctules (longueur d'onde = 20 000 Hz/44000 m.s<sup>-1</sup> = 0,02 m soit 2 cm). » par :
  - « Un moustique ne renverra guère d'écho pour des fréquences inférieures à une quarantaine de kilohertz (longueur d'onde =  $340 \text{ m.s}^{-1}$  /  $40\,000 \text{ Hz} = 0,0085 \text{ m}$  soit 0,85 cm) alors qu'un hanneton ou une grosse noctuelle se détecteront facilement avec un signal centré sur une vingtaine de kilohertz comme celui des Noctules (longueur d'onde =  $340 \text{ m.s}^{-1}$  /  $20\,000 \text{ Hz} = 0,017 \text{ m}$  soit 1,7 cm). »
- ❖ p. 41 : dernières lignes du premier § : remplacer « Pour une octave nous ne pouvons percevoir qu'une centaine de niveaux de fréquences. Ceci est valable aussi bien pour une octave entre 10 et 20 kHz qu'entre 40 et 50 kHz. » par « Pour une octave nous ne pouvons percevoir que 250 niveaux de fréquences. Ceci est valable aussi bien pour une octave entre 10 et 20 kHz qu'entre 40 et 80 kHz. ».
- p. 42 : ligne 8 ; enlever le « à » dans « La sensibilité est maximale à entre 2... ».
- ❖ p. 42 : ligne 18 ; remplacer « Les claquements en début et fin de signal peuvent... » par « L'amorce en début et le claquement en fin de signaux peuvent... ».
- ❖ p. 43: § Réception, lignes 1 et 2; ajouter: « La réception des cris qu'ils soient sociaux ou sonar se fait par les oreilles. Celles des microchiroptères (selon Dobson, 1875 & 1878) ressemblent aux nôtres. ».
- ❖ p. 45 : fin du dernier § ; insérer le § suivant : « En théorie, la distinction entre signaux sonar et signaux de communication sociale est simple, mais au moins deux paramètres viennent complexifier cette dichotomie : 1) des signaux sonar de chasse qui sont émis par un chiroptère donné dans le but unique de localisation acoustique, peuvent être

- utilisés comme indice de présence de proies potentielles par un autre chiroptère (de la même espèce ou non); nous sommes alors dans le domaine de la communication passive : le premier n'a pas l'intention de communiquer (c'est même souvent contraire à son intérêt, à l'instar du voleur qui laisse un indice au policier avec ses empreintes digitales sur le coffre-fort) mais il le fait quand même, à son insu; 2) certains types de signaux semblent (d'après leur structure et leurs conditions d'émission) ambivalents : ils pourraient avoir une double fonction d'écholocalisation et de communication. Si cette hypothèse est exacte, la frontière est donc parfois fragile. ».
- ❖ p. 48: § 1, ligne 8; remplacer la phrase: « Les détecteurs actuels donnent des transposition auditives ou graphiques (anabat SD2/SD1 + Pad, EM3, Ultramic + Tablet PC...) et qui peuvent être archivées directement sur carte mémoire ou, en multipliant les conversion analogiques/numériques, sur du matériel audio standard. » par « Les détecteurs actuels donnent des transposition auditives ou graphiques qui peuvent être archivées directement sur carte mémoire. ».
- ❖ p. 49 : § 1, ligne 6 ; supprimer la phrase : « Tout ceci est valable pour un cri de structure simple, sans harmonique, dont l'énergie est concentrée sur une seule fréquence au même instant. En revanche pour un cri complexe, l'énergie est dispersée sur plusieurs harmoniques qui ne présentent pas leur minimum de sensibilité à 62 kHz au même moment, cette répartition énergétique augmente la valeur du minimum du fondamental. ».
- p. 49 : remplacer le titre du § 2 « Directivité d'un microphone » par « Traitement des ultrasons perçus ».
- ❖ p. 49 : § 2, ligne 6 ; modifier la phrase suivante : « Un microphone à condensateur avec une membrane fine de grand diamètre est plus sensible et plus directif qu'un microphone électret de petit diamètre. En plaçant dans le même axe deux détecteurs, l'un équipé d'un microphone à condensateur et membrane fine et l'autre électret, une chauve-souris dans l'axe est entendue de plus loin avec le premier ; ».
- p. 50 : § 2, ligne 2 ; supprimer la parenthèse « (DSP/ampli) ».
- ❖ p. 50 : fin du § 2 ; rajouter : « ...des chauves-souris une fréquence d'échantillonnage de 300 kHz est un minimum. Sur beaucoup de détecteurs cette fréquence d'échantillonnage n'est pas réglable, mais par défaut elle est souvent de 384 ou 441 kHz ; sur d'autres modèles le choix est possible, et l'on veillera à ce que le minimum de 300 kHz (les fréquences initiales du fondamental de certains signaux émis par le genre *Myotis* montent jusqu'à 140 kHz) soit respecté. Lorsque la séquence expansée doit être enregistrée sur un enregistreur périphérique (cas des détecteurs non équipés d'une carte mémoire interne SD ou CF), il est inutile que la fréquence d'échantillonnage de l'enregistreur soit supérieure à 44,1 kHz puisque les fréquences d'origine sont divisées par 10 après expansion. ».
- ❖ p. 50 : § 3, ligne 3 ; modifier la phrase suivante : « A ce stade, la fréquence d'échantillonnage du détecteur est associée à cette mémoire et aux caractéristiques de la séquence enregistrée. ».
- ❖ p. 52 : légende de la figure 7 ; remplacer : « A gauche : spectrogramme d'un signal comportant un fondamental et un harmonique très atténué ; à droite : un écho apparaît dans le bruit de fond ; le même signal traité en division de fréquence. » par « A gauche : spectrogramme d'un signal comportant un fondamental et un harmonique très atténué ; un écho apparaît dans le bruit de fond ; à droite : le même signal traité en division de fréquence. ».

- ❖ p. 54: § Expansion de temps; ligne 17; corriger: «. Or, les émissions sonores des chauves-souris se situent entre 20000 et 120000 Hz et la plupart d'entre elles autour de 40000 Hz. Un ralenti de 20 restitue donc entre 1000 et 6000 Hz, 40000 Hz s'entend à 2000 Hz. Avec un ralenti de 10 la restitution se fait entre 2000 Hz et 12000 Hz et le 40000 Hz s'entend à 4000 Hz. A titre de comparaison la musique orchestrale se situe entre 30 et 10000 Hz avec une prépondérance des fréquences entre 100 et 2000 Hz. ».
- ❖ p. 55 : § 2, ligne 2 ; modifier comme suit : « A l'heure actuelle la plupart des modèles de détecteurs fonctionnant en manuel nécessitent un enregistreur périphérique. Une autre possibilité récente, plus simple et rapide, est l'intégration du module d'enregistrement dans le détecteur lui-même. » par « A l'heure actuelle plusieurs modèles de détecteurs fonctionnant en manuel nécessitent encore un enregistreur périphérique. Depuis le début des années 2000, les modèles récents intègrent de manière avantageuse le module d'enregistrement dans le détecteur lui-même. ».
- ❖ p. 56 : § L'analyse assistée par ordinateur ; ligne 19 ; corriger : « On ne peut étudier que des séquences de durée finie, souvent 2,4 secondes, et de ce fait ... ».
- ❖ p. 57: § 3; alinéa 3 en bas de page; remplacer: « la pertinence de ces choix est affectée par un taux d'échantillonnage (utilisé lors de la numérisation) supérieur à 50 kHz: à 96 kHz par exemple il faut diviser par deux la taille de la fenêtre FFT pour obtenir un résultat graphique équivalent. » par « la pertinence de ces choix est affectée par le taux d'échantillonnage utilisé lors de la numérisation: pour une fréquence d'échantillonnage (en expansion par 10) de valeur moyenne (38,4 ou 44,1 kHz) une fenêtre FFT de 512 points est correcte; à 70 ou 96 kHz la fenêtre FFT doit être divisée par deux (256 points) et à 19,2 kHz elle doit être multipliée par deux (1024 points) pour obtenir un résultat graphique équivalent. ».
- p. 59 : § « Outils associant l'observateur sur le terrain » ; ligne 1 ; modifier la phrase :
   « La plupart des modèles de détecteurs disponibles actuellement... » par « Beaucoup des modèles de détecteurs disponibles actuellement... ».
- ❖ p. 59 : § « Outils associant l'observateur sur le terrain » ; ligne 3 ; supprimer la parenthèse : « (dans ce cas on se reportera à la section 2 ci-dessous) ».
- ❖ p. 60: § Détecteurs avec division de fréquence, ligne 9; remplacer la phrase « combiner l'hétérodyne et la division de fréquence, chacun dans une oreille, permet d'optimiser détection et appréciation de la sonorité et de la FME : dès qu'un train... » par « combiner l'hétérodyne et la division de fréquence, chacun dans une oreille, permet d'optimiser appréciation de la sonorité et de la FME d'une part, et détection d'autre part : dès qu'un train... ».
- ❖ p. 60: dernier § en bas de page (se poursuivant p. 61), de « Ces dispositifs enregistrent... de sonagrammes affichés en temps réel. » à supprimer et remplacer par « Ces dispositifs enregistrent la totalité de l'enveloppe sonore (attention toutefois à certains modèles dont la fréquence d'échantillonnage, limitée à 192 kHz, est insuffisante pour les signaux de *Myotis*). L'enregistrement peut être programmé, déclenché par l'utilisateur ou grâce à une combinaison de filtres (seuil d'énergie, fréquence, durée, succession de signaux similaires...). Plusieurs systèmes se limitent à un microphone et un logiciel, permettant de visualiser en direct les spectrogrammes sur une tablette. ».
- ❖ p. 61: § Systèmes à division de fréquences; ligne 1; remplacer: « Le système ANABAT<sup>TM</sup> domine actuellement le marché pour ce type de technique. » par « Le

- système ANABAT<sup>TM</sup> a longtemps dominé le marché des enregistrements automatiques. ».
- ❖ p. 61 : § Systèmes à division de fréquences ; ligne 4 ; remplacer : « , ...et par suite une quantification des séquences... » par « , ...et par suite une comptabilité des séquences... ».
- p. 61 : § Systèmes à expansion de temps/enregistreurs hautes fréquences ; modifier comme suit les lignes 10 et suivantes : « Les informations recueillies nécessitent un temps long de dépouillage, de classification et d'analyse des séquences, ceci se faisant manuellement sur beaucoup de modèles. Un pré triage peut être cependant réalisé de façon relativement efficace en utilisant un logiciel de mesure des cris de chiroptères comme SCAN'R (Binary Acoustic Technoloy, et un programme de reconnaissance (tel que Sonochiro développé par Biotope et le MNHN) dont les algorithmes sont basés sur une grande série de données issues d'enregistrements fiables. Les erreurs d'identification issues de ce tri automatique oscillent entre 1% pour les groupes faciles (Rhinolophes) à 30 % pour les groupes difficiles (Murins). Elles obligent donc l'observateur à contrôler manuellement les résultats paraissant aberrants, ou concernant des groupes complexes; mais ce biais ne peut que s'améliorer dans les temps à venir. » par « La quantité de séquences recueillies est grande, rendant fastidieux un dépouillage et une analyse manuels. Un tri automatique des séquences contenant des signaux de chiroptères puis une identification des espèces ou groupes d'espèces (assortie d'un niveau de probabilité) peuvent cependant être réalisés par des logiciels adaptés. Les taux d'erreur d'identification issus de ces systèmes automatiques sont variables ; ils sont souvent assez faibles pour des espèces comme P. pipistrellus (représentant souvent la majorité des contacts) mais peuvent dépasser 60 % pour les groupes d'espèces complexes (Myotis spp, N. leisleri & V. murinus, etc.). Ces imprécisions obligent donc l'observateur à contrôler manuellement une partie des résultats. Souhaitons que la recherche continue dans ce domaine et apporte des améliorations notables. ».
- ❖ p. 62 : § 2, ligne 4 : remplacer « s'il s'avère très pratique pour différencier à l'écoute instantanée les signaux comprenant une partie QFC et les signaux FM, il est totalement inadapté à l'identification des espèces spécialistes de cette dernière structure (genres *Myotis* et *Plecotus*)... » par « s'il s'avère très pratique pour différencier à l'écoute instantanée les signaux FM des signaux comprenant une partie QFC, il est totalement inadapté à l'identification des espèces spécialistes de la FM (genres *Myotis* et *Plecotus*)... ».
- ❖ p. 62 : § 3, ligne 6 : remplacer « ... manquer en direct les séquences sur hautes et basses fréquences. » par « manquer en direct les signaux quelle que soit leur gamme de fréquences. ».
- ❖ p. 62 : § 4, ligne 6 : remplacer « Parmi les 34 espèces étudiées, seuls *M. nattereri* et *M. escalerai* n'offrent aucune possibilité... » par « Parmi les 35 espèces étudiées, seuls *R. mehelyi*, *M. nattereri* et *M. escalerai* n'offrent aucune possibilité... ».
- ❖ p. 63: § INVENTAIRES QUALITATIFS ET QUANTITATIFS, ligne 9; remplacer « l'observateur devra par contre dépouiller et analyser toutes les séquences une à une, y compris les nombreuses de Pipistrelles dont l'identification instantanée sur le terrain est aisée. » par « par contre l'observateur devra soit dépouiller et analyser toutes les séquences une à une (y compris les nombreuses de Pipistrelles dont l'identification instantanée sur le terrain est aisée), soit utiliser un logiciel de tri et

- d'identification automatique des séquences (qui nécessite quand même un certain nombre de vérifications manuelles). ».
- ❖ p. 64 : § RECHERCHES SUR LE SONAR, ligne 8 ; remplacer « en maintes régions du monde, pour étudier la variabilité intraspécifique, les moteurs de cette variabilité... » par « en maintes régions du monde, pour étudier la variabilité intraspécifique et les moteurs de cette variabilité... ».
- ❖ p. 64: § RECHERCHES SUR LE SONAR, ligne 21; remplacer « ...est essentielle pour mettre en évidence l'évolution du sonar en lien avec... » par « ...est essentielle pour mettre en évidence les variations du sonar en lien avec... ».
- ❖ p 69 : § « Processus d'identification », dernière ligne ; remplacer « « Etudes d'habitats », p. 262 » par « « L'identification auditive et informatique grâce à l'expansion de temps », p. 125 » ;
- ❖ p. 71 : lignes 7 et 8 ; remplacer « la conversion en hétérodyne des séquences expansées, avec variation du battement zéro (virtual bat detector). » par « la conversion en hétérodyne des séquences expansées, avec manipulation autour du battement zéro (virtual bat detector). ».
- p. 72 : insérer sous la figure 13 l'encadré suivant :


## Résolution et fréquence d'échantillonnage

Les sons analogiques d'origine arrivant jusqu'au microphone, vont être numérisés par le détecteur pour permettre leur écoute et leur visualisation ; ce processus implique deux paramètres dont certaines conséquences sont importantes à connaître :

La résolution : elle se mesure en bits ; elle conditionne la plage dynamique (c'est-à-dire la tolérance à s'écarter en dessous du seuil de saturation tout en conservant une bonne qualité de restitution sonore) ; elle conditionne aussi le nombre de points d'échantillonnage appliqués à la courbe d'origine, dans l'axe des Y (voir graphique ci-dessous) ; comme elle n'évolue pas de façon linéaire mais en puissance de 2, une résolution de 8 bits implique 256 points (2<sup>8</sup>) de référence le long de l'axe, alors qu'avec 16 bits elle passe à 65536 points (2<sup>16</sup>) de référence, donc une meilleure qualité de numérisation (et une meilleure plage dynamique).

La fréquence d'échantillonnage (Fe) : elle se mesure en Hz; son augmentation influence positivement la qualité générale de restitution des signaux (par un nombre supérieur de points de référence sur l'axe des X), mais influence négativement la précision des mesures de fréquences que l'on devra réaliser grâce à la densité spectrale. Un compromis pour l'étude des signaux de chiroptères est donc à trouver. On tiendra compte des éléments pratiques suivants :

- la hauteur de la fenêtre fréquentielle maximale affichable sur un spectrogramme (fréquence de Nyquist) est égale à la Fe divisée par deux. Ainsi il est impératif de retenir une Fe minimale qui prenne en compte les fréquences les plus hautes atteintes par les chiroptères européens. Les fréquences initiales des signaux FM de *M. nattereri* sont le record connu : 175 kHz. La Fe de nos détecteurs doit donc être d'au moins 350 kHz (certains microphones ou enregistreurs sont dotés d'une Fe de 256 ou 192 kHz par ex., ce qui masque sur spectrogramme les fréquences supérieures à 128 ou 96 kHz respectivement). A l'opposé, dépasser 400 kHz (pour la faune européenne) est inutile voire nuisible à la précision des mesures de fréquences ;
- la Fe d'une séquence, lorsqu'elle n'est pas connue, peut être vérifiée sur BatSound dans la fenêtre Sound Format; toute modification de la Fe entraîne un changement de l'échelle des fréquences du spectrogramme et du taux d'expansion (donc par suite des erreurs d'écoute et de mesures des signaux : si l'on double la Fe d'une séquence de Sérotine sur 24 kHz elle se transforme en une séquence de Pipistrelle sur 48 kHz!);
- diviser la Fe par 10 revient à transformer une séquence en expansion de temps x 10 (la Fe du fichier reste inchangée, c'est la vitesse de lecture qui est modifiée). Ce processus est réalisé automatiquement lors de l'écoute depuis le détecteur, et peut l'être manuellement sur le logiciel d'analyse;
- pour les détecteurs non équipés d'une carte mémoire intégrée pour les enregistrements, une Fe est appliquée à chaque processus de numérisation : dans le détecteur puis à l'entrée de l'enregistreur périphérique ; pour ce dernier il est inutile de sélectionner une Fe supérieure à celle du détecteur (par défaut choisir la plus basse : 44,1 kHz) ;
- pour les détecteurs équipés d'une carte mémoire intégrée, les séquences enregistrées sur la carte SD ou CF sont dites en « hautes fréquences » (c'est à dire en fréquences réelles); pour être lues en expansion de temps x 10, leur Fe (variable selon les détecteurs) doit être divisée par 10 sur BatSound dans la fenêtre Sound Format; le facteur d'expansion doit être de 10 au lieu de 1 pour ajuster les échelles de temps et de fréquences (à noter que les mesures de signaux restent valables et identiques que l'on soit sur 384000 et 1 ou 38400 et 10; c'est l'écoute qui est modifiée). Les versions récentes de BatSound (4.4 et suivantes) permettent de configurer la vitesse de lecture au 1/10<sup>e</sup> (Sound; Play speed) et ainsi éviter de diviser par 10 manuellement la Fe pour chaque séquence écoutée.



Fréquence d'échantillonnage (Hertz)

Ce graphique montre le quadrillage fictif croisant les points de la Fe (axe des X) et de la résolution (axe des Y): lorsque la courbe analogique d'origine (en bleu) coïncide avec un croisement, un point d'échantillonnage est retenu; ainsi la finesse du quadrillage conditionne la fidélité de la courbe numérisée (symbolisée par le trait rouge) par rapport à la courbe d'origine.

- ❖ p. 72 : § 2 (« une fois BatSound ouvert... »), alinéa 1 ; modifier la phrase « Dans la fenêtre « sound format » (onglet « sound ») : sélectionner plutôt 16 bits, mono (sauf dans le cas d'enregistrements avec un détecteur offrant en sortie l'hétérodyne sur une voie et l'expansion sur l'autre voie), 44 100 de fréquence d'échantillonnage, 10 pour le facteur expansion de temps ; avec les enregistreurs numériques, le paramètre d'échantillonnage est déjà inscrit dans le fichier et s'affiche automatiquement ; avec les détecteurs a carte mémoire, il faut le diviser par 10 pour expanser la séquence. » comme suit : « Dans la fenêtre « sound format » (onglet « sound ») : sélectionner 10 pour le facteur expansion de temps (pour faire correspondre à l'expansion par 10 les échelles de durée et de fréquences dans les représentations graphiques) ; la fréquence d'échantillonnage correspondant à l'enregistrement est déjà cochée ou inscrite : elle ne doit pas être changée sauf dans le cas des détecteurs à carte mémoire interne où il faut la diviser par 10 pour expanser la séquence. »
- p. 72 : remplacer le texte après l'encadré :
- « Avant de passer en revue chacune de ces représentations, il nous faut d'abord vérifier quelques configurations:
- la carte son de votre ordinateur d'abord : dans le cas où la séquence est rentrée dans l'ordinateur à partir d'un lecteur audio (minidisc, cassette audio ou DAT, CD) par la prise jack de l'entrée microphone, il vous faut lors de la première utilisation activer l'ampli (procédure variable selon les systèmes d'exploitation); une fois effectuée, cette opération ne devrait plus être à refaire. Lors de chaque utilisation, si vous voulez entendre le son rentrant par la prise d'entrée micro, il vous faudra activer le son du micro (désactivé en mode normal pour éviter un effet Larsen avec les hauts-parleurs) : double clic sur icône son, décocher muet sur volume micro.

- une fois BatSound ouvert (figure 13), il faut vérifier les paramètres d'enregistrement :
  - 1. Dans la fenêtre « Sound Format » (onglet « Sound ») : sélectionner 10 pour le facteur expansion de temps (pour faire correspondre à l'expansion par 10 les échelles de durée et de fréquences dans les représentations graphiques) ; la fréquence d'échantillonnage correspondant à l'enregistrement est déjà cochée ou inscrite : elle ne doit pas être changée sauf dans le cas des détecteurs à carte mémoire interne où il faut la diviser par 10 pour expanser la séquence. Dans les fenêtres du bas vous pouvez inscrire les informations relatives à l'enregistrement.
  - 2. Les 3 icônes verdâtres les plus à droites permettent de configurer les paramètres par défaut pour chaque type de graphique ; nous allons nous attarder quelque peu sur les deux icônes de droite (spectrogramme et densité spectrale) : »

#### par:

« Avant de passer en revue chacune de ces représentations, il faut d'abord vérifier quelques configurations.

Si votre séquence à analyser provient d'un détecteur non équipé d'une carte mémoire interne pour les enregistrements, elle est donc passée par l'intermédiaire d'un enregistreur périphérique qui a permis de la stocker (et qui l'a réenregistrée en lui appliquant ses propres paramètres de fréquence d'échantillonnage (Fe) et de résolution, voir encadré p. 72). Etant enregistrée depuis la sortie de l'expanseur du détecteur, elle est donc déjà en expansion de temps et n'a pas besoin d'être modifiée pour être écoutée au ralenti sur le logiciel.

Si votre séquence à analyser provient de la carte mémoire interne d'un détecteur, elle est enregistrée en fréquences réelles (donc inaudibles) et non en expansion de temps. Son écoute au ralenti nécessite donc une manipulation, qui va dépendre du logiciel utilisé. Si vous utilisez une version de BatSound antérieure à 4.4, il faut modifier les paramètres d'enregistrement : dans la fenêtre « Sound Format » (**figure 13, flèche 1**) de l'onglet « Sound », il faut diviser par 10 (en enlevant le zéro à la fin) la Fe (dans la rubrique « Samples per second ») déjà cochée ou inscrite par défaut, puis inscrire 10 pour le facteur d'expansion de temps (pour rétablir les échelles de durée et de fréquences dans les représentations graphiques). Si vous utilisez la version 4.4 de BatSound ou postérieure, il suffit de cocher une fois pour toutes le facteur 1/10 dans « Play speed » de l'onglet « Sound ».

Dans la barre d'outils en haut de la fenêtre de BatSound, les 3 icônes verdâtres les plus à droite (**figure 13, flèche 2**) permettent de configurer les paramètres par défaut pour chaque type de graphique; nous allons nous attarder quelque peu sur les deux icônes de droite (spectrogramme et densité spectrale) : »

- ❖ p. 72 : § Spectrogramme, à partir ligne 6 ; modifier comme suit : « ...plus la fenêtre est étroite (256 par ex.), plus la précision de la représentation verticale (donc la durée) est proche de la réalité, mais ceci aux dépens de la précision de la représentation horizontale (donc la fréquence) ; et inversement ; ce que l'on améliore d'un côté, on le détériore de l'autre. Lorsqu'on doit mesurer des signaux, les conséquences de ce principe sont variables en fonction de leur structure :
  - o les signaux FM abrupte sont courts avec une grande largeur de bande ; on est donc sensé exiger une plus grande précision pour la mesure de la durée que pour celle de la largeur de bande. Ces mesures s'effectuant à partir de l'image du spectrogramme grâce à la croix de mesure, une fenêtre FFT de 256 points devrait théoriquement être préférée, pour améliorer visuellement les limites du signal en durée ;
  - o les signaux QFC sont longs avec une très faible largeur de bande; les exigences sont donc inversées, avec l'attente d'une plus grande précision pour la mesure de la largeur de bande que pour celle de la durée. Une fenêtre FFT de 1024 améliorerait donc la précision d'affichage de la très faible largeur de

bande visuellement sur le spectrogramme (nous verrons plus loin comment contourner ce problème, en effectuant les mesures fréquentielles de FI et FT grâce à la densité spectrale), mais étirerait le signal latéralement, majorant la mesure de durée (qui elle se réalise grâce à la croix de mesure) par rapport à la réalité.

- Après de nombreux essais comparatifs... »
- ❖ p. 73 : lignes 4 et suivantes ; remplacer « Après de nombreux essais comparatifs, il s'avère qu'une fenêtre de 512 est un excellent compromis pour tous les types de signaux (lorsque la fréquence d'échantillonnage est inférieure ou égale à 50kHz), et apportera peu de biais lors des différentes mesures à effectuer avec la croix ; cette configuration est donc fortement recommandée. Attention ! Si l'on passe à l'écran de la fenêtre de « niveau inférieur » à « plein écran », la taille de fenêtre FFT va passer de 512 à 1024; le paramétrage sera alors à refaire. » par « Après de nombreux essais comparatifs, il s'avère qu'une fenêtre de 512 est un excellent compromis pour tous les types de signaux ; cette configuration est donc à utiliser impérativement pour que vos mesures correspondent aux valeurs de référence présentées dans cet ouvrage. Attention cependant à deux cas particuliers : 1) sur un ordinateur dont l'écran dépasse 30 cm de largeur, si l'on change la taille de la fenêtre du logiciel de « niveau inférieur » à « plein écran », la taille de fenêtre FFT peut passer de 512 à 1024 ; le paramétrage sera alors à refaire (clic droit, Spectrogram settings, current diagram). 2) la valeur de fenêtre FFT est dépendante de la fréquence d'échantillonnage à laquelle votre enregistrement a été effectué. La plupart des détecteurs échantillonnent à 384, 441 ou 500 kHz (ce qui donne après expansion respectivement 38,4; 44,1; 50 kHz) et les enregistreurs périphériques à 441 kHz : pour ces valeurs (consultables dans la fenêtre « Sound Format ») on retiendra 512 points de fenêtre FFT. Certains modèles de SM2 (Wildlife Acoustics) n'échantillonnent qu'à 192 kHz : on paramétrera alors 1024 points de fenêtre FFT pour retrouver les mêmes proportions visuelles de représentation. ».
- ❖ p. 73 : alinéa « Threshold », ligne 2, modifier comme suit : « ...et inversement ; on peut configurer le seuil par défaut sur une valeur médiane pour permettre toute latitude dans un sens ou dans l'autre ; c'est un paramètre dont nous aurons à nous servir...
- ❖ p. 74: § Densité spectrale (Power spectrum), ligne 1; remplacer « La fenêtre « Oscillogram settings default values »; les éléments... » par « La fenêtre « Power spectrum settings default values »; les éléments... ».
- ❖ p. 74 : alinéa « FFT size », à remplacer par : « la configuration est plus complexe que pour le spectrogramme, car ici la précision de mesure due à la largeur de fenêtre FFT que l'on va sélectionner par défaut, a une incidence particulière dans un cas très précis. La densité spectrale donne une représentation en courbe de l'évolution de l'intensité tout au long de la largeur de bande fréquentielle. Il s'ensuit logiquement que lorsque le signal est une QFC, la courbe de densité spectrale affiche un pic étroit, toute l'énergie étant concentrée dans une gamme fréquentielle très étroite ; et inversement pour une FM abrupte : l'énergie est diluée dans une large gamme de fréquences, et on obtient une courbe en cloche étalée. Or, lorsque l'on recherche une grande précision dans la mesure de fréquence du maximum d'énergie (FME), sur une FC ou QFC notamment, il faut avoir à l'esprit que plus la fenêtre FFT de la densité spectrale est large, plus la précision est grande : pour mesurer la FME d'une QFC on devrait théoriquement choisir une fenêtre de 1024 ou 2048 points. Cette largeur de fenêtre de calcul est visualisable sur BatSound : il suffit de cliquer avec le curseur de marquage (Marking cursor) sur un endroit précis du spectrogramme et de demander

une densité spectrale; le trait vertical du spectrogramme devient alors une bande sombre ; si l'on fait un clic droit sur la fenêtre de densité spectrale, et que l'on modifie dans « Settings – current diagram » la taille de fenêtre FFT, on visualise aussitôt sur le spectrogramme les modifications de largeur de la bande temporelle de calcul. Une bande large est sans incidence pour une mesure de FME qui porte sur l'ensemble d'un signal de plusieurs millisecondes, mais pour mesurer la fréquence initiale d'une QFC (c'est-à-dire une zone temporelle très étroite), s'il se produit (comme souvent) une légère modulation de fréquences descendante dans les premières millisecondes, et que la largeur de fenêtre de calcul est de 2,7 ms (comme c'est le cas en 1024 points pour une Fe de 384 kHz), la valeur de notre mesure de FI ne sera précise que théoriquement; elle sera en réalité minorée, étant une médiane du balayage fréquentiel à l'intérieur de la fenêtre de calcul trop large, et non une mesure du tout début du signal. C'est donc dans ce cas précis (mesure de la fréquence initiale d'une QFC) que l'on choisira une FFT de densité spectrale de 256 points (la largeur de fenêtre FFT passe alors à 0,7 ms pour une Fe de 384 kHz); et seulement dans ce cas : pour toutes les autres mesures en densité spectrale, 512 points sera la règle. Lorsque la fenêtre FFT diminue la précision de mesure diminue aussi (en 384 kHz de Fe, elle est de ± 0,37 kHz en 512 points, et ± de 0,75 kHz en 256 points); la densité spectrale, pour une QFC, donne alors une colonne plus large en 256 qu'en 512 : pour estomper efficacement cette marge d'erreur, il faut toujours positionner la croix de mesure sur la médiane de la colonne, quelle que soit la forme de son sommet ; »

- ❖ p. 74: § 2 (sur les cartes mémoires), ligne 11; modifier la phrase comme suit : « Lorsque cette carte mémoire provient d'un enregistreur périphérique, les deux voies d'enregistrement peuvent être identiques (cas du Pettersson D980) ou différentes (cas du Pettersson D240X : hétérodyne sur l'une et expansion de temps sur l'autre). ».
- ❖ p. 74: avant-dernier § (phrase en gras); supprimer (en rouge) et ajouter (en bleu): « La fréquence d'échantillonnage doit par contre être divisée par 10 lorsque la séquence provient d'un enregistreur hautes fréquences (Pettersson D1000X et D500X, SM2 ou EM3 de Wildlife Acoustics...), afin de permettre une lecture en expansion par 10 (le fait de diviser par 10 la fréquence d'échantillonnage dans « Sound Format » ne modifie pas cette dernière, mais modifie seulement la vitesse de lecture). ».
- ❖ p. 76 : alinéa 2 ; remplacer « ...va subir selon le matériel utilisé jusqu'à cinq conversions analogique/numérique, qui en théorie... » par « ...va subir selon le matériel utilisé de une (détecteur à carte mémoire intégrée) à trois (détecteur avec enregistreur numérique périphérique) conversions analogique/numérique, qui en théorie... ».
- ❖ p. 76 : fin du 3e § ; rajouter : « ...selon une tendance cohérente avec une interprétation « écologique) ». Il est possible que ces phénomènes uniquement audibles d'amorce et de claquement soient trop brefs pour les visualiser à l'aide d'une analyse FFT (algorithme couramment utilisé en traitement numérique du signal pour transformer des données discrètes du domaine temporel dans le domaine fréquentiel), qui utilise une large fenêtre temporelle. La solution pourrait être d'avoir une fréquence d'échantillonnage beaucoup plus élevée pour diminuer la fenêtre temporelle d'une FFT. En fait, les canaux d'analyse humaine n'ont quasiment pas de fenêtre temporelle ; notre oreille pourrait être comparée à une colonne de filtres étroits qui analyse l'intensité en permanence dans leur domaine de fréquence. Il est déjà possible d'implémenter ce type de fonctionnement dans de nouveaux composants spécialisés. Reste à attendre que ces techniques soient appliquées à l'analyse des signaux des chiroptères (J-D. Vrignault, comm. pers.). ».

- p. 79: insérer l'encadré « Addendum1\_12juillet2012\_Signaux sonar, classification et interprétation » (PDF à télécharger).
- ❖ p. 83 : légende Figure 29 ; remplacer « fréquence » par « FME ».
- ❖ p. 83 : début § 2 ; remplacer « Sur la figure 31, on remarque que le signal sur 80 kHz est souligné et surligné d'homologues parfaitement alignés dans l'échelle temporelle, et dont les décalages correspondent à des multiples (40, 80, 120) ; le chapitre suivant sur les harmoniques va expliquer ce phénomène ; ce que l'on en retiendra pour l'instant, c'est que la fréquence du maximum d'énergie du Rhinolophe s'est déplacée, au cours du développement du juvénile, des fréquences basses vers les plus hautes en se concentrant sur le troisième harmonique (tous n'apparaissent pas sur ce spectrogramme). » par « Sur la figure 31, on remarque que le composant le plus intense sur 110 kHz est souligné et surligné d'homologues parfaitement alignés dans l'échelle temporelle, et dont les décalages correspondent à des multiples (55 et 165 ; les autres traces correspondent à des artefacts dus à une légère saturation) ; le chapitre suivant sur les harmoniques va expliquer ce phénomène ; ce que l'on en retiendra pour l'instant, c'est que la fréquence du maximum d'énergie des Rhinolophes s'est déplacée, au cours du développement du juvénile, du fondamental vers le premier harmonique. ».
- ❖ p. 84 : ligne 8, rajouter : « ... ou buccale (tous les Vespertilionidés, Molossidés et Miniopteridés) le son... ».
- ❖ p. 84: § 2, ligne 5; remplacer « ... de cette famille où le résonateur (cavité nasale en l'occurrence) a filtré les harmoniques pour mettre le maximum d'intensité sur le troisième; en effet, bien que nous ne voyions que deux composants sur le spectrogramme, il en existe deux autres (sur environ 28 et 84 kHz dans ce cas précis) trop faibles pour apparaître. Le fondamental de ce Petit rhinolophe est donc sur 28 kHz, et un harmonique (H) est donc produit tous les 28 kHz, même si ce sont seulement H1 et H3 qui apparaissent. » par « ... de cette famille où le résonateur (cavité nasale en l'occurrence) a déplacé l'énergie des différents composants; ainsi la FME, initialement (en sortie du larynx) positionnée sur le fondamental, se retrouve en sortie des narines contenue dans l'harmonique 1. ».
- p. 89 : alinéa Fréquence initiale (FI) ; fin du § ; remplacer : « Détail important : afin d'améliorer la précision du pic d'énergie, il faut donner à la largeur de fenêtre FFT de la densité spectrale une valeur de 256 points – au lieu de 512 pour les FM (clic droit sur Power spectrum, Settings – current diagram, FFT size : 256); la prise de mesure se fait ainsi sur une fenêtre plus étroite. Ce paramétrage doit être vérifié pour toute mesure de densité spectrale sur QFC ou FC. » par « Détail important : afin de mesurer la fréquence au tout début du signal (car c'est là que se produit une modulation descendante lorsqu'elle existe), il faut travailler sur une fenêtre temporelle plus étroite, donc donner à la largeur de fenêtre FFT de la densité spectrale une valeur de 256 points au lieu de 512 (clic droit sur Power spectrum, Settings – current diagram, FFT size : 256). Ce paramétrage ne concerne que la mesure de fréquence initiale d'une QFC; pour toutes les autres mesures on reviendra à 512 points. Nous sommes ici face à un dilemme, car réduire la largeur de fenêtre FFT a aussi pour effet de réduire la précision de la mesure fréquentielle : avec une FE de 384 kHz, la précision de mesure de fréquences est de 0,75 kHz avec 512 points, et de 1,5 kHz à 256 points. Il en résulte, sur analyse spectrale, un dôme ou cône tronqué sur 256 points au lieu d'un pic plus étroit sur 512 points. Plusieurs tests montrent que sur 256 points, en positionnant

- la croix de mesure sur la médiane du dôme ou cône (**figure 42**), la marge d'erreur est réduite à 0,5 kHz; on retiendra donc cette façon de procéder. ».
- ❖ p. 92 : § Mesures d'un signal FM/QFC ou FM aplanie, alinéa Fréquence du maximum d'énergie (FME) ; remplacer « ...mais avec une fenêtre FFT de 256 au lieu de 512 ; » par « ...avec une fenêtre FFT de 512 ; »
- ❖ p. 93 : alinéa « Durée partie FC » ; remplacer et ajouter : « la croix de mesure doit être positionnée sur le trait fin de la FC à la naissance de la FM initiale (clic gauche), puis à la naissance de la FM terminale (sans cliquer) ; » par « la croix de mesure doit être positionnée sur le trait fin de la FC à la fin de la FM initiale (clic gauche), puis à la naissance de la FM terminale (sans cliquer). A noter que cette mesure n'est pas discriminante pour l'identification des espèces, elle ne sert qu'à disperser la seule variable informative (fréquence de la partie FC) ; elle n'a donc pas besoin d'être précise ; »
- ❖ p. 93-94 : alinéa « Fréquence de la partie FC » ; remplacer : « elle s'effectue grâce à la densité spectrale avec une fenêtre FFT de 256 ; la sélection peut englober toute la durée de la FC ou une partie seulement de celle-ci sans que la valeur en soit modifiée ; il est recommandé par contre de sélectionner les signaux les plus intenses de la séquence pour éviter le décalage fréquentiel Doppler dû au déplacement de l'animal. » par « elle s'effectue grâce à la densité spectrale avec une fenêtre FFT de 512 points (voire 1024 si on veut être encore plus précis : avec une longue FC cette fenêtre est bien adaptée) ; si la courbe affiche un cône tronqué au lieu d'un pic étroit, positionner la croix de mesure sur la médiane du cône ; la sélection peut englober toute la durée de la FC ou une partie seulement de celle-ci sans que la valeur en soit modifiée ; il est indispensable de sélectionner les signaux les plus intenses de la séquence pour éviter le décalage fréquentiel Doppler dû au déplacement de l'animal. »
- ❖ p. 98 : ligne 8 ; remplacer « de nombreux tests, et lors des 28 sessions de formation menées depuis 1994. » par « de nombreux tests, et lors des 33 sessions de formation menées depuis 1994. ».
- ❖ p. 99 : tableau 1 ; certaines valeurs sont modifiées au fur et à mesure des nouvelles analyses, et une espèce (*E. isabellinus*) a été rajoutée (voir graphiques et valeurs dans le fichiers Excel « Identification\_Nyctalus-Eptesicus-Vespertilio » déposé sur le blog) ; la version ci-dessous est à jour :

**Tableau 1 :** Liste des 35 espèces dont les signaux ont fait l'objet d'analyses informatique dans le cadre de notre programme de recherche.

| Espèces                   | N.<br>séquences | N. signaux<br>FM | N. signaux<br>FC & QFC | TOTAL signaux |
|---------------------------|-----------------|------------------|------------------------|---------------|
| Rhinolophus hipposideros  | 129             |                  | 129                    | 129           |
| Rhinolophus ferrumequinum | 53              |                  | 53                     | 53            |
| Rhinolophus euryale       | 151             |                  | 151                    | 151           |
| Rhinolophus mehelyi       | 26              |                  | 26                     | 26            |
| Myotis daubentonii        | 38              | 336              |                        | 336           |
| Myotis capaccinii         | 45              | 387              |                        | 387           |
| Myotis dasycneme          | 38              | 332              |                        | 332           |
| Myotis brandtii           | 40              | 672              |                        | 672           |
| Myotis mystacinus         | 31              | 329              |                        | 329           |

| TOTAL                     | 1166 | 5743 | 1188 | 6931 |
|---------------------------|------|------|------|------|
| Tadarida teniotis         | 33   | 52   | 92   | 144  |
| Miniopterus schreibersii  | 22   | 84   | 40   | 124  |
| Barbastella barbastellus  | 16   | 109  | 1    | 110  |
| Plecotus macrobullaris    | 21   | 197  |      | 197  |
| Plecotus austriacus       | 14   | 252  |      | 252  |
| Plecotus auritus          | 33   | 246  |      | 246  |
| Hypsugo savii             | 11   | 49   | 32   | 81   |
| Pipistrellus pygmaeus     | 30   | 79   | 61   | 140  |
| Pipistrellus kuhlii       | 35   | 168  | 59   | 227  |
| Pipistrellus nathusii     | 13   | 59   | 49   | 108  |
| Pipistrellus pipistrellus | 27   | 92   | 61   | 153  |
| Vespertilio murinus       | 17   | 107  | 77   | 184  |
| Eptesicus nilssonii       | 28   | 96   | 93   | 189  |
| Eptesicus serotinus       | 37   | 238  | 9    | 247  |
| Eptesicus isabellinus     | 10   | 19   | 16   | 35   |
| Nyctalus lasiopterus      | 27   | 119  | 77   | 196  |
| Nyctalus leisleri         | 14   | 50   | 73   | 123  |
| Nyctalus noctula          | 21   | 113  | 89   | 202  |
| Myotis punicus            | 7    | 70   |      | 70   |
| Myotis oxygnathus         | 20   | 199  |      | 199  |
| Myotis myotis             | 41   | 237  |      | 237  |
| Myotis bechsteinii        | 31   | 270  |      | 270  |
| Myotis escalerai          | 8    | 70   |      | 70   |
| Myotis nattereri          | 52   | 207  |      | 207  |
| Myotis emarginatus        | 30   | 216  |      | 216  |
| Myotis alcathoe           | 17   | 289  |      | 289  |

- ❖ p. 100 : lignes 7 et 8 ; remplacer « ; *Rhinolophus mehelyi* et *R. blasii* (respectivement proche de l'extinction et absent de France) sont traités d'après les données bibliographiques ; » par « ; *Rhinolophus mehelyi* n'est connu que grâce aux enregistrements (en sortie et à l'intérieur du gîte) réalisés et aimablement communiqués par Mauro Mucedda en Sardaigne ; *R. blasii* est traité d'après les données bibliographiques ; ».
- p. 100 : ligne 9 ; supprimer « Eptesicus isabellinus, ».
- ❖ p. 100 : dernière ligne du § 5 ; ajouter : « (individu perché, ou sélection de la partie généralement celle contenant les signaux les plus intenses correspondant à la fréquence propre de l'individu). ».
- ❖ p. 103: § Signaux QFC, ligne 2; ajouter: « Eptesicus nilssonii, Eptesicus isabellinus, Pipistrellus nathusii): la bande... ».
- ❖ p. 108: § son DVD 2.19, ligne 1 : remplacer « *Barbistes* » par « *Barbitistes* » ;
- p. 109 : remplacer les 3 premiers § d'énumération par les suivants :

- Rhinolophus hipposideros présente la variabilité fréquentielle la plus grande; chaque individu est calé sur une fréquence précise dont il ne s'écarte que très peu, mais les membres d'une même colonie peuvent s'étager entre 102,5 et 113 kHz (c'est la plus variable des 3 espèces étudiées dans ce programme de recherche). Le maximum enregistré provient d'un individu espagnol (116,1 kHz). Le minimum (2 cas sur 129 mesures) est de 102,5 kHz, cependant 86,8 % des individus étudiés affichent des valeurs supérieures à 106 kHz.
- Rhinolophus euryale est proche, puisque les extrêmes mesurés en France sur 151 individus vont de 100 à 106,4 kHz; 39 % des individus se situent en dessous de 102,5 kHz, donc en dehors de la zone recouvrement avec R. hipposideros. Entre 102,5 et 106,5 kHz (zone de recouvrement), on rencontre 17,8 % des R. hipposideros testés, et 60,9 % des R. euryale testés. Là où les deux espèces sont sympatriques, la certitude absolue ne peut ainsi être établie pour R. euryale qu'en dessous de 102,5 kHz.
- *Rhinolophus mehelyi* a été étudié à travers 26 séquences enregistrées par Mauro Mucedda en Sardaigne. Les fréquences mesurées vont de 104.3 à 111.2 kHz. Il est donc en recouvrement total avec *R. hipposideros*.
- ❖ p. 111 : § Couple *P. kuhlii/P. nathusii*, dernière ligne : remplacer : « sons DVD 2.64 et 2.63 » par « sons DVD 2.65 et 2.64 ».
- ❖ p. 112 : § « Comme dans tous les domaines, il existe des cas particuliers », ligne 6 ; remplacer : « ... Marc Van de Sijpe (comm. pers.) a noté en Belgique des fréquences de 31-32 kHz » par « ... fréquences de 34,5 à 37 kHz ».
- ❖ p. 114: § son DVD 2.32, ligne 3: remplacer « 36 kHz » par « 38 kHz ».
- ❖ p. 116 : ligne 1 ; ajouter : « E. nilssonii, E. isabellinus, V. murinus et T. teniotis émettent de la QFC... ».
- ❖ p. 116: demier §; ligne 1; ajouter: «Groupe E. nilssonii / E. serotinus / E. isabellinus / V. murinus / N. leisleri: le recouvrement...».
- p. 117 : tableau 3 ; rajouter une ligne pour *E. isabellinus* :

| Alternance de  |                                           | FME (kHz) selon comportement de vol |                                     |  |  |
|----------------|-------------------------------------------|-------------------------------------|-------------------------------------|--|--|
| en FME e       | signaux décalés<br>en FME et<br>structure | Milieu ouvert (QFC)                 | Lisière et approche<br>(FM aplanie) |  |  |
| E. nilssonii   |                                           | 27 à 29                             | 27 à 32                             |  |  |
| E. isabellinus |                                           | 21 à 25                             | 22 à 29                             |  |  |
| E. serotinus   |                                           | 22 à 24                             | 23 à 44                             |  |  |
| V. murinus     |                                           | 22 à 27                             | 23,5 à 29                           |  |  |
| N. leisleri    | X                                         | 21 à 27                             | 23 à 30                             |  |  |
| N. noctula     | X                                         | 17 à 22                             | 22 à 29                             |  |  |
| N. lasiopterus | X                                         | 13,5 à 16                           | 16 à 22                             |  |  |
| T. teniotis    |                                           | 9 à 13                              | 13 à 17                             |  |  |

❖ p. 117 : fin du § *E. serotinus* (ligne 11 sous tableau 3) : « ... monte fréquemment à 30 kHz ou plus ; *E. isabellinus*, présente dans une partie de la péninsule ibérique, se

- démarque par l'usage très fréquent (notamment au crépuscule, avec une chasse élevée en milieu ouvert) de signaux QFC longs qui donnent une sonorité riche (comme pour une Noctule, mais sans l'alternance) entre 21 et 23 kHz. La distinction entre ces deux espèces très proches est néanmoins délicate en hétérodyne, même si le critère du rythme peut cependant être utilisé sur de longues séquences. *E. isabellinus* en chasse active (crépuscule) a un rythme souvent régulier (voir **son DVD2.43a**); par nuit tombée le rythme adopte souvent un phrasé sur 3 temps qui rappelle celui d'*E. nilssonii* (voir **son DVD2.43b**);
- ❖ p. 118 : insérer entre les § son DVD2.43 et son DVD2.44 les deux § suivants : son DVD2.43a: bord de plan d'eau avec quelques arbres isolés; un individu chasse au crépuscule le long de la rive plus ou moins loin des arbres ; les variations de sonorité indiquent des signaux en FM aplanie, avec un battement zéro sur 22,8 kHz; lors des phases à rythme plus lent, l'absence d'alternance de signaux décalés en fréquence et en structure élimine le genre Nyctalus; le genre Eptesicus est donc retenu car nous sommes dans le sud de l'Espagne (Sierra de Cazorla, Andalousie) où V. murinus est absente ; la fréquence basse alors que l'animal est en chasse active, associé au rythme plutôt régulier sur les phases de croisière permettent d'identifier E. isabellinus de oson DVD2.43b: pente à boisement lâche avec rochers; manière probable. quelques individus chassent juste au-dessus de la canopée ; les variations de sonorité indiquent des signaux en FM aplanie, l'enregistrement a été réalisé sur 23,7 kHz; lors des phases à rythme plus lent, l'absence d'alternance de signaux décalés en fréquence et en structure élimine le genre Nyctalus ; le genre Eptesicus est donc retenu car nous sommes dans l'ouest de l'Espagne (Monfrague, Extremadure) où V. murinus est absente ; la fréquence basse alors que l'animal est en chasse active, associé au rythme répétant fréquemment un phrasé sur trois temps permettent d'identifier E. isabellinus de manière probable.
- p. 124 : ligne 5 de la clé : supprimer (risque de confusion avec R. hipposideros).
- ❖ p. 124: § ③ Structures QFC et FM aplanie de la clé: insérer une ligne entre Tadarida teniotis et Vespertilio murinus: « 21 à 25 kHz QFC rythme irrégulier (3 tps); (Espagne) ..... Eptesicus isabellinus ».
- ❖ p. 125 à 245 : remplacer le mot « sonorité » par le mot « timbre » lorsque ce terme est associé à « nasillard », « sifflé » ou « miaulé ».
- ❖ p. 127: ligne 2; ajouter: «Vespertilio, Hypsugo, Nyctalus, Tadarida, Eptesicus nilssonii, Eptesicus isabellinus, Pipistrellus nathusii; ».
- ❖ p. 127: § LA STRUCTURE, ligne 7; remplacer « ...FC est d'autant plus audible que l'harmonique 1 est intense » par « ...FC est d'autant plus audible que le fondamental est intense ».
- ❖ p. 127: son DVD3.1; remplacer «...l'harmonique 1 est apparent (figure 51) et perceptible, ce qui donne une tonalité plus grave à l'ensemble, sauf sur les 6 derniers signaux où il est moins intense. L'harmonique 3 (le plus intense) a une FME de 81 kHz... » par «...le fondamental est visible (figure 51) et audible, ce qui donne une tonalité plus grave à l'ensemble, sauf sur les 6 derniers signaux où il est moins intense. L'harmonique 1 (le plus intense) a une FME de 81 kHz... ».
- ❖ p. 127: son DVD3.2; remplacer « ... L'harmonique 3 (le plus intense) a une FME de 107,8 kHz » par « ... L'harmonique 1 (le plus intense) a une FME de 107,8 kHz ».
- ❖ p. 127 : rajouter après le son 3.2 : « son 3.2a : cette longue séquence de R. hipposideros illustre un comportement de chasse fréquent, de type exploratoire dans

un faible volume, pouvant générer plusieurs minutes de contacts acoustiques pour un observateur situé au cœur de la zone active. Ici les trajectoires de vol semblent circulaires, comme l'indiquent les variations corrélées d'intensité et de fréquence (effet Doppler dû au déplacement de l'animal par rapport au microphone). La mesure de la FME de la partie FC doit s'effectuer sur les signaux les plus intenses car ils correspondent à l'alignement dans l'axe du microphone ce qui minimise la distorsion fréquentielle de l'effet Doppler : la FME est ici de 105,8 kHz. On remarque aussi le « taux d'utilisation » du temps d'émission : un Rhinolophe consacre 60 à 80 % du temps à émettre ses signaux, ce que les autres genres européens ne font jamais afin d'éviter le recouvrement temporel entre l'émission d'un signal et la réception de son écho (voir p. 86).

- ❖ p. 128 : légende Figure 51 ; supprimer « Seuls sont marqués les harmoniques : 1 (faible) 3 (intense) 5 (très faible) ».
- ❖ p. 128 : légende Figure 52 ; supprimer « Seuls sont marqués les harmoniques : 1 (très faible) 3 (intense) 5 (estompé) ».
- ❖ p. 128: ajouter à la légende du § son 3.9 « signaux QFC/FM de *M. daubentonii* provenant d'un individu en vol au ras de la surface de l'eau, comportement logiquement attribuée à de la chasse active accompagnée de signaux FM abrupte en abs moy ; enregistrement : P. FAVRE (**figure 53**). »
- ❖ p. 129 : remplacer la légende du § son 3.5 par « signaux FM aplanie (voir figure 56) de durée longue (> 15 ms) sur 25 kHz environ de FME. »
- ❖ p. 129 : remplacer la légende du § son 3.6 par « signaux FM/QFC (voir figure 57) de durée courte (6 à 7 ms) sur 38 kHz environ de FME. »
- ❖ p. 131 : ajouter à la fin du § <u>Cris sociaux</u> la phrase suivante : « Le critère le plus informatif, comme toujours, relève de l'analyse comportementale. Un train de signaux sonar a toujours une rythmique en cohérence avec les impératifs de localisation spatiale. Or les cris sociaux simples qui ressemblent à des signaux sonar en structure et en fréquence (comme chez le genre *Plecotus* par exemple), sont toujours distribués dans le temps de façon isolée (au milieu de longs silences ou de signaux sonar) ou groupée en séries rapprochées, au milieu de longs silences : cette disposition est incohérente en termes de logique sonar. »
- ❖ p. 133 : lignes 3 et 4, remplacer la phrase « Il est difficile de définir des seuils précis, mais les valeurs suivantes trouvent une cohérence dans les faits : » par « Il est difficile de définir des seuils précis, mais les valeurs présentées dans le Tableau 4a trouvent une cohérence dans les faits. ». Après la ligne 4, remplacer les 3 alinéas par le tableau suivant :

Tableau 4a : Valeurs approximatives des tranches de durée (en ms) des signaux sonar des chiroptères, selon le type de structure. NB : ces limites sont à considérer comme des approximations et non comme des valeurs absolues précises. Elles sont déterminées, pour chaque groupe d'espèces considéré, en fonction de nombreuses mesures réalisées sur spectrogramme et des estimations correspondantes de passage d'un comportement à un autre (notamment en termes de distance entre l'individu émetteur et les obstacles ou proies).

| Grandes espèces ; FME < 30 kHz (Eptesicus, Vespertilio, Nyctalus, Tadarida) |        |         |        |  |
|-----------------------------------------------------------------------------|--------|---------|--------|--|
| Structures signaux sonar                                                    | Courte | Moyenne | Longue |  |
| QFC (LB < 5 kHz)                                                            | < 12   | 12 à 20 | > 20   |  |
| FM/QFC (LB > 5 kHz)                                                         | < 8    | 8 à 15  | > 15   |  |
| FM (approche)                                                               | < 5    | 5 à 10  |        |  |

| Petites espèces ; FME > 30 kHz (Hypsugo, Pipistrellus, Miniopterus) |        |         |         |  |
|---------------------------------------------------------------------|--------|---------|---------|--|
| Structures signaux sonar                                            | Courte | Moyenne | Longue  |  |
| QFC (LB < 5 kHz)                                                    | < 8    | 8 à 12  | > 12    |  |
| FM/QFC (LB > 5 kHz)                                                 | < 5    | 5 à 10  | 10 à 15 |  |
| FM (approche)                                                       | < 3    | 3 à 5   |         |  |

| Espèces FM ( <i>Myotis, Plecotus, Barbastella</i> ) |        |         |      |  |
|-----------------------------------------------------|--------|---------|------|--|
| Structures signaux sonar Courte Moyenne Longue      |        |         |      |  |
| QFC (LB < 5 kHz)                                    |        |         |      |  |
| FM/QFC/FM (M.dasycneme)                             | 5 à 10 | 10 à 15 | > 15 |  |
| FM                                                  | < 3    | 3 à 6   | > 6  |  |

- \*
- ❖ p. 134 : légende Figure 65 : 5<sup>e</sup> ligne, remplacer « encombré » par « semi ouvert » ; dernière ligne, remplacer la phrase : « ce signal a une sonorité sifflée (bien que différente de celle d'un *Myotis*) » par « ce signal a une sonorité non nasillarde, mais différente de la sonorité sifflée des *Myotis* sans doute à cause de la faible largeur de bande et de la FME basse ; elle pourrait être qualifiée de « miaulée ». ».
- ❖ p. 135 : alinéa « Amorce explosive (am) », ligne 3, ajouter : « on la retrouve sur presque toutes les structures : QFC, FM aplanies et FM abrupte. Pour une même sensation auditive, on peut supposer plusieurs causes très différentes, en lien avec la structure et la durée des signaux. Sur une QFC, l'amorce explosive est certainement due à la rétention de l'énergie derrière un sphincter (glotte ? lèvres ?...) qui, lorsqu'il s'ouvre, libère l'énergie à son maximum dès les premières microsecondes (ce dispositif a dû être sélectionné au cours de l'évolution pour optimiser la « durée utile » d'une QFC, dont dépend la portée de ce type de signal). Sur une FM aplanie courte de Pipistrelle, la sensation d'amorce explosive est artefactuelle : c'est la contraction de la partie FM, trop courte pour que notre oreille apprécie la modulation, qui restituée par un effet explosif; sur un signal de Sérotine commune, de structure identique mais deux fois plus long, notre oreille a le temps d'accompagner la modulation et l'amorce explosive disparaît; idem pour les signaux de Minioptère les plus longs, avec une courbure très régulière qui s'étend sur la moitié du signal. Et sur une FM d'Oreillard ou une FM abrupte de Murin, quelles peuvent être les explications ? Il est difficile de répondre autrement que par une série d'hypothèses : effet de sphincter (donc production à la source)? effet artefactuel dû à une pente très abrupte en début de signal, compactée par notre oreille? Etc. Lorsqu'un signal est saturé... »
- ❖ p. 135 : § Amorce explosive (am), ligne 8; remplacer « clac » par « crac ».
- p. 136: ligne 3; ajouter: « ...par exemple le cri fin du Bruant zizi *Emberiza cirlus* (amorce explosive) et celui du Bruant fou *Emberiza cia* (amorce progressive); ».
- ❖ p. 136 : § Modulation d'amplitude sinusoïdale (mod ampl), ligne 3 ; remplacer : « ... donnant une forme sinusoïdale en densité spectrale ou sur oscillogramme. » par « donnant une forme sinusoïdale sur oscillogramme et une succession de dômes en densité spectrale. ».
- ❖ p. 136 : § Modulation d'amplitude sinusoïdale (mod ampl), ligne 15 ; ajouter : « ... les cris du Martinet noir *Apus apus* ou du Gobe-mouche gris *Muscicapa striata* ; ».
- ❖ p. 137 : supprimer la phrase en bas de page : « Les exemples suivants montrent, pour mémoire, une sélection de cas où la sensation auditive trouve un corollaire plus ou moins ostensible sur différentes représentations graphiques (figures 66 à 69). »

- ❖ p. 139 : ajouter (en gras) en fin de texte de la légende figure 70 : « Voir plus de détails dans l'encadré ci-dessous. »
- p. 139 : ajouter l'encadré suivant, sous la figure 71

# Les faux claquements dus à un écho : quelle parade?

La **figure 70** illustre un cas fréquent d'écho juste après chaque signal d'une séquence, souvent bien visible sur spectrogramme. Cet artefact, sur une FM abrupte de *Myotis*, peu s'ajouter à un claquement final bien réel (mais non visible), ou donner une fausse sensation de claquement sur un signal « absence de pic » ou « amorce explosive », entraînant une erreur dans le processus d'identification. Une oreille exercée parvient dans la plupart des cas à séparer le vrai du faux, grâce à deux décalages : fréquentiel (le pic d'énergie est au niveau de la FME et non au niveau de la FT) et temporel (si l'écho est suffisamment distant du signal). Mais lorsque l'écho est bien visible sur le spectrogramme et que l'on est pas sûr de son analyse auditive, un procédé simple et rapide sur le spectrogramme offre une solution fiable.

Dans un premier temps, il est toujours préférable de commencer par filtrer négativement les basses fréquences de la séquence, en dessous de la FT des signaux (voir explications page 75). Il faut ensuite, sur la partie de séquence où le claquement est entendu et où l'écho est visible :

- sélectionner (avec le « Marking cursor ») une bande temporelle (similaire à la durée de l'écho, traînée comprise) de bruit de fond neutre (sans signal ni écho) entre deux signaux, la copier (Ctrl + C);
- 2) sélectionner la bande temporelle correspondant à l'écho et sa traînée juste après le premier signal, puis coller (Ctrl + V) à la place la bande de bruit de fond neutre ;
- 3) répéter l'opération 2) sur quelques signaux successifs ;
- 4) écouter cette partie de la séquence où le filtrage temporel a été effectué, pour vérifier si le claquement a disparu ; s'il est encore audible, alors c'est un vrai claquement.

Autre cas classique de faux claquement : les signaux de *Myotis* liés aux surfaces aquatiques (*M.capaccinii*, *M. dasycneme*, *M. daubentonii*).

Ceux-ci ont une distribution de l'énergie en modulation d'amplitude sinusoïdale, artefact qui les fait apparaître sur spectrogramme sous la forme d'un chapelet de billes (chacune représentant un pic d'énergie). Sur ces signaux, il est très fréquent qu'un écho prolonge le signal sous la FT, tel une bille supplémentaire : c'est cet artefact qui produit un faux claquement. On évitera toute confusion en gardant à l'esprit que c'est bien la réflexion des signaux sur l'eau (ou toute autre surface lisse) qui provoque le faux claquement, car aucune de ces espèces ne pratique des signaux avec vrai claquement lorsqu'elles chassent au-dessus de l'eau.

- ❖ p. 141 : ligne 2 ; remplacer « Plus de 5600 signaux de 33 espèces » par « Près de 7000 signaux de 35 espèces ».
- ❖ p. 141 : fin de l'avant-dernier §, ajouter : « ... ainsi les foyers de densité maximale incarnent bien les pratiques acoustiques les plus fréquentes, et les points plus isolés des pratiques marginales. De ce fait, les graphiques permettent une utilisation qui dépasse la simple lecture à plat de valeurs dans un plan, désincarnées de leurs circonstances d'utilisation. Deux autres dimensions peuvent être appréciées : 1) la

variation de densité de points au sein de la distribution étant révélatrice de la densité d'utilisation par l'espèce, des signaux représentés par quelques points dispersés ou excentrés ne se retrouvent jamais seuls dans une séquence, mais mélangés au comportement type incarné par le ou les foyers de plus forte densité; 2) la pratique de certains types de signaux (par exemple la QFC chez *P. kuhlii versus P. nathusii*, ou tel type acoustique chez un *Myotis*) peut être liée à un comportement qui constitue une signature spécifique, par ailleurs détaillée dans le chapitre correspondant de ce livre, ou rappelée dans des encarts près des graphiques des fichiers Excel; en connaissant ces critères comportementaux qui vont sélectionner positivement ou négativement des espèces dont les valeurs mesurées sont en recouvrement, l'utilisateur optimise l'interprétation des graphiques, et par suite les possibilités d'identification.

❖ p. 144 : rajouter l'encadré suivant au-dessus de «IDENTIFICATION DES FC (RHINOLOPHES) »

Les graphiques bivariés reproduits dans le livre et contenus dans les fichiers Excel du DVD sont à tout moment susceptibles d'être complétés, voire modifiés, au gré des avancées de la recherche.

Les versions mises à jour sont téléchargeables sur le blog <a href="http://ecologieacoustique.fr">http://ecologieacoustique.fr</a>

- ❖ p. 146: tableau 5; ligne R. ferrumequinum, colonne Ecart-type; remplacer « 82,5 »
- $\Rightarrow$  par  $\ll 1,7$  ».
- ❖ p. 144 : ligne 5 en partant du bas de page ; corriger : « …la durée de cette même partie, pour les quatre espèces étudiées. ».
- ❖ p. 146-147: modifier la Figure 77 (voir fichier xls *Identification\_Rhinolophus\_Barataud-*), le Tableau 5 et le texte qui le suit, selon les indications suivantes :

Figure 77 : Distribution des valeurs (durée / FME de la partie FC) issues des mesures de signaux des quatre espèces de Rhinolophes étudiés. Les durées courtes chez *R. mehelyi* proviennent sans doute des conditions d'enregistrement, mais les FME n'en sont pas pour autant modifiées.

| TD 11 7     | <b>T7 '11</b> | ,            | 1 ,         |         | 1 101 1   | 1 / 11/         |
|-------------|---------------|--------------|-------------|---------|-----------|-----------------|
| Tableau 5 · | Variables     | mecureec cur | lec dilatre | echecec | de Khinol | ophes étudiés.  |
| radicau 5.  | v ai iau ics  | mesurees sur | ics dualic  | CSDCCCS | uc mino   | oblics cidales. |

| Espèce           | N.        | N.      | FME partie FC |          |  |
|------------------|-----------|---------|---------------|----------|--|
| Бэресе           | séquences | signaux | Moyenne       | Ecartype |  |
| R. ferrumequinum | 53        | 53      | 82,4          | 1,7      |  |
| R. euryale       | 151       | 151     | 102,8         | 1,2      |  |
| R. mehelyi       | 26        | 26      | 107,2         | 2,0      |  |
| R. hipposideros  | 129       | 129     | 109,4         | 2,8      |  |

La clé d'identification des quatre espèces de Rhinolophes étudiés, basée sur les valeurs de FME de la partie FC, peut se résumer ainsi :

| • | 76 à 85 kHz         | R. ferrumequinum                                            |
|---|---------------------|-------------------------------------------------------------|
| • | 100 à 102,5 kHz     | R. euryale                                                  |
| • | 102,5 à 104 kHz :   | R. euryale / R. hipposideros (R. euryale probable à 94,5 %) |
| • | 104 à 106,5 kHz :   |                                                             |
| • | 106,5 à 111,5 kHz : | R. hipposideros / R. mehelyi                                |

■ 111,5 à 116 kHz ...... *R. hipposideros* 

Les données bibliographiques sur *Rhinolophus blasii* indiquent une FME de 92 à 98 kHz (Papadatou *et al.*, 2008 ; Siemers *et al.*, 2005).

❖ p. 147 : après la ligne 3, rajouter le § suivant : « Quels sont les éléments à prendre en compte lorsqu'on recueille une séquence de Rhinolophe entre 102,5 et 106,5 kHz, dans l'aire de distribution de *R. euryale* ?

D'abord <u>la FME</u> de la partie FC doit se prendre sur les signaux les plus intenses de la séquence pour éviter la distorsion fréquentielle due à l'effet <u>Doppler</u> lorsque l'individu est en vol (voir p. 129, son 3.2a).

Ensuite, pour ce qui est d'attribuer la donnée à telle ou telle espèce (*R. hipposideros* ou *R. euryale*) suivant la FME mesurée, il ne faut pas confondre deux probabilités :

- l'une statistique, calculée d'après les mesures sur un échantillonnage de signaux issu de plusieurs régions (principalement françaises) ;
- l'autre évaluée et non quantifiable, fait appel aux connaissances actuelles d'un contexte local, se rapportant à la probabilité de rencontrer telle ou telle espèce en tel ou tel endroit (*R. euryale* est supposé rare ou absent dans de nombreuses zones y compris au sein de son aire de distribution générale).

Les deux probabilités sont indépendantes ; elles sont également importantes dans l'interprétation de la donnée.

Une probabilité statistique de 95 % en faveur de *R. euryale* sur la base de la fréquence des signaux, dans une zone géographique où il n'est pas connu, signifie aussi que la probabilité d'être confronté à un individu de *R. hipposideros* émettant entre 102,5 et 106,5 kHz est de 5 %, autrement dit faible mais loin d'être nulle.

Il est donc aussi incorrect de conclure en faveur de l'une ou l'autre espèce sur la base unique de la gamme de fréquences, que de le faire en fonction de l'absence constatée jusque-là de *R. euryale* dans la zone considérée : une note « égarée » de *R. euryale*, sauf circonstances extrêmes (régions nordiques, plus de 1000 à 1500 m d'altitude, etc.) est toujours possible.

Il est ainsi conseillé de souligner l'incertitude en écrivant le taxon « R. euryale/hipposideros » et de commenter les deux probabilités de manière indépendante. ».

- ❖ p. 147 : après la ligne 3 sous l'encadré, rajouter l'alinéa suivant : « P. kuhlii : voir encadré p. 228. ».
- ❖ p. 147: remplacer le § M. daubentonii par : « M. daubentonii : parmi les séquences récoltées, la grande majorité correspond à un comportement de transit ou de recherche passive sur de courtes phases (rythme assez lent et régulier, absence de phases d'approche et de capture), au-dessus de l'eau (milieu habituel de l'espèce) ou plus rarement sur un chemin forestier; la hauteur de vol, estimée dans tous les cas aux alentours de 1 à 1,5 mètre, est incompatible avec la technique de chasse habituelle de cette espèce : un comportement de type mixte, sonar et social, est donc suspecté. Mais pour un cas (son 3.9), la séquence a été produite par un individu (observé visuellement; Philippe Favre, comm. pers.) en vol rasant au-dessus de la surface d'une rivière calme (l'Aude) : s'agissait-il d'un comportement exclusif de chasse, ou d'un comportement mixte ? Souvent, ces signaux QFC/FM sont émis en présence de congénères continuant à émettre leurs signaux types; mais parfois ils sont émis par un individu en apparence isolé (pas d'autres signaux audibles dans la séquence, mais notre distance de détection pour de tels signaux est certainement inférieure à la

distance de perception pour un Murin de Daubenton!). Ce type de comportement acoustique reste insuffisamment documenté grâce à des enregistrements et observations visuelles en simultané, pour établir un déterminisme évident. Comme le montrent les **figures 78 à 81**, les paramètres varient dans des proportions importantes, aussi bien la durée (4 à 10 ms) que la FME de la partie QFC (42 à 65 kHz); la FT varie aussi beaucoup (30 à 22 kHz). Les signaux les plus longs, en milieu ouvert, débutent parfois par une FM ascendante à bande étroite (< 10 kHz); la pente affichée par la partie QFC, et la variabilité de structure invalident tout rapprochement avec la technologie Doppler de détection de mouvement en surface de l'eau (comme pour le genre *Noctilio* en contexte néotropical). A l'audition la distinction entre ces signaux et des FM concaves classiques demande un bon entraînement, surtout sur les signaux courts. »

- ❖ p. 149 : légende Figure 82, ligne 2 : remplacer « Signal type B modulé en QFC / FM » par « Signal type A modulé en QFC / FM ».
- ❖ p. 150 : § 2 sous encadré, ligne 2 ; ajouter : « T. teniotis, Nyctalus spp, Eptesicus nilssonii, E. isabellinus, V. murinus... ».
- ❖ p. 152 : § FME < 30 kHz ; modifier la première phrase : « ... à l'exception notable d'*Eptesicus serotinus*, qui l'utilise dans des circonstances de chasse crépusculaire élevée ou de transit aérien, mais de façon rarissime (deux séquences enregistrées en 20 ans, sur plusieurs milliers de contacts !).
- ❖ p. 152 : § Signaux QFC ; ligne 1 : « ... statistiques descriptives pour les huit espèces concernées, ... ».
- ❖ p. 152 à 229 : tous les tableaux et les graphiques de mesures de signaux sont à réactualiser (voir fichiers xls mis à jour sur le site ecologieacoustique.fr).
- ❖ p. 152 : fin § au-dessus du titre « FME < 30 kHz », rajouter (retour à la ligne) la phrase suivante : « Enfin, on rencontre un cas particulier avec les signaux de structure FMd-QFC-FMd produits par le Murin des marais *Myotis dasycneme*, qui est la seule espèce FM type à produire fréquemment des signaux à composantes QFC. Ce cas est traité dans la section <u>Signaux FM/QFC, FM aplanie (ou FM bande étroite)</u> p. 174 et suivantes (Tableau 10 ; Figures 104 et 105 ; son 3.177) et dans la monographie qui lui est consacrée p. 241. »
- ❖ p. 153 : tiret « la durée des signaux » ligne 5 ; rajouter en fin de phrase : « ... pour une recherche de proies à distance plus grande. C'est le principal critère de diagnose entre *E. serotinus* et *E. isabellinus*, cette dernière rappelant beaucoup les QFC longues de *V. murinus* (dont la distribution est *a priori* non recouvrante de celle d'*E. isabellinus*).
- ❖ p. 153 : fin alinéa « la durée des signaux », rajouter : « ...non recouvrante de celle d'E. isabellinus). N. leisleri est une spécialiste des QFC très courtes, alors que c'est une espèce de haut vol rapide qui devrait logiquement optimiser la portée de ses signaux par de longues durées. Cette caractéristique a sans doute été sélectionnée pour augmenter sa discrétion vis-à-vis des lépidoptères tympanés, qu'elle capture souvent : les durées courtes gênent l'interprétation de l'information par les papillons. Le résultat pour nos problématiques d'identification est très positif : toute QFC de durée inférieure à 10 ms, dans la gamme des 21 à 28 kHz, pourra être attribuée à N. leisleri ; »

- ❖ p. 153: insérer après la ligne 26 le § suivant : « A l'inverse, certaines Sérotines émettant en QFC (notamment *V. murinus*, voir son DVD 3.36a), lors de phases de croisière en recherche active de proies et/ou d'obstacles, traduisent leur haute curiosité par une alternance plus ou moins régulière de signaux décalés en structure et/ou en FME; les écarts de FME sont alors faibles (souvent < 1 kHz) et se justifient par le comportement de recherche active (une phase de signaux d'approche progressive est souvent présente); une fois cette phase de curiosité passée, les QFC typiques sans alternance sont seules présentes, mais ces critères réclament de longues séquences pour apprécier le comportement. ».
- ❖ p. 157 : remplacer le § <u>Signaux QFC ou FM aplanie alternés en fréquence</u> par : « Les trois espèces de Noctules ont la particularité d'alterner fréquemment des signaux décalés en fréquence voire en structure. Les **figures 91 et 92** montrent un recouvrement interspécifique faible pour certaines variables croisées deux à deux. L'alternance est souvent relativement régulière chez *N. lasiopterus* et *N. noctula*, et

L'alternance est souvent relativement regulière chez N. lasiopterus et N. noctula, et très irrégulière chez N. leisleri.

Certaines caractéristiques de la **figure 91** permettent une analyse écologique des traits

Certaines caractéristiques de la **figure 91** permettent une analyse écologique des traits comportementaux acoustiques chez ces trois espèces. Les variables de FME et de LB sont généralement corrélées lorsque les émissions sonar obéissent uniquement à la théorie de localisation d'obstacles ; il en résulte une distribution normale le long d'une pente à environ 45°. De plus, selon le modèle des signaux alternés des Noctules, les signaux de type A sont généralement des QFC (LB < 5 kHz) sur des FME plus basses que les types B qui sont souvent plus modulés (LB > 5 kHz).

*N. noctula* suit bien la pente à 45°, ses types A sont des QFC et ses types B des FM aplanies dont les LB sont dépendantes de la distance aux obstacles : c'est le « bon élève » de l'alternance, qui donne la référence...

- N. lasiopterus a également la bonne pente, mais on observe d'une part un recouvrement entre types A et B, et une restriction de la LB: un schéma qui semble montrer une limitation de la différence entre les signaux alternés; l'écart moyen entre les signaux A et B n'est que de 1.8 kHz pour N. lasiopterus alors qu'il est de 3,2 kHz pour N. noctula. D'où l'hypothèse d'une pression de sélection liée au régime alimentaire très particulier de N. lasiopterus (voir chapitre dédié p. 310).
- ❖ p. 157 : § Signaux FM/QFC, FM aplanie (ou FM bande étroite) ; ligne 12 ; remplacer « ... qui sont déclinées de haut en bas par ordre décroissant de FME » par : « ... qui sont déclinées de haut en bas par ordre décroissant de FT ».
- ❖ p. 159 : Figure 93a à insérer entre les deux séries de spectrogrammes de la légende Figure 93 ; légende Figure 93 à supprimer ; légende Figure 93 à modifier comme suit : « Figure 93 : spectrogrammes montrant l'évolution de structure du signal selon la diminution (de gauche à droite : croisière, début d'approche, fin d'approche) de la distance aux obstacles ; en haut : V. murinus [espèce QFC : noter l'intensité maximale dès le début des signaux en milieu ouvert (à gauche)] ; au centre : E. isabellinus [espèce QFC ; noter la cassure brutale souvent présente sur les signaux FM/QFC (au centre et à droite)] ; en bas : E. serotinus (espèce FM aplanie ; l'amorce est progressive et la courbe généralement régulière). ».
- ❖ p. 159: § Signaux FM/QFC, FM aplanie (ou FM bande étroite), fin §3, rajouter: « …avec une récurrence généralement plus faible et donc des intervalles plus grands. Pour les autres espèces qu'E. serotinus, le vol en sous-bois correspond presque toujours à une activité de transit pour quitter ou rejoindre le gîte; lorsqu'une Noctule chasse près du feuillage, elle longe la lisière verticale ou la canopée (voir son 3.41a)

en ralentissant sa vitesse de vol sur quelques dizaines de mètres puis s'en éloigne à nouveau pour reprendre de la vitesse, ce schéma pouvant être répété plusieurs fois. »

- ❖ p. 159 : avant-dernière ligne ; supprimer le « s » à la fin de « forestières ».
- p. 159: rajouter sous la figure 93 la figure suivante :

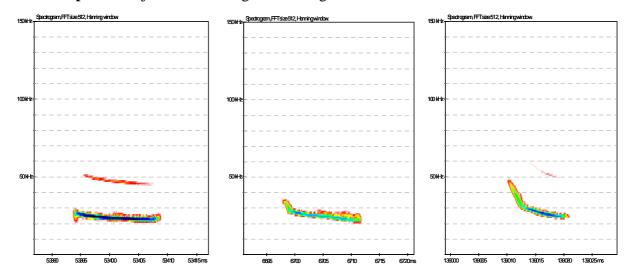



Figure 93a : Spectrogrammes montrant l'évolution de structure du signal selon la diminution de distance aux obstacles chez *E. isabellinus* ; noter l'intensité maximale dès le début des signaux en milieu ouvert (à gauche) et la cassure brutale souvent présente sur les signaux FM/QFC (au centre et à droite).

- ❖ p. 161 : § 2 ; modifier les phrases à partir de la ligne 3 : « ... ; E. nilssonii, V. murinus et E. isabellinus sont par contre très coutumières de signaux à amorce explosive, y compris dans un environnement de vol relativement confiné entre des bâtiments ou près d'une lisière. Cette différence entre E. serotinus et E. isabellinus se voit sur spectrogramme : chez la première le début des signaux est en pointe fine (figure 93, en bas) alors que chez la seconde le début est arrondi avec un élargissement maximal immédiat (figure 93a). Le critère d'amorce explosive est plus variable chez les Noctules en milieu encombré ; mais même lorsqu'il est absent, souvent leur largeur de bande plus faible les distingue d'E. serotinus. Une autre différence à noter sur spectrogramme entre E. serotinus et E. isabellinus : celui de la courbure des signaux ; alors que chez la première les signaux sont presque toujours de type FM aplanie (courbure concave régulière ; voir figure 93 en bas), la seconde affiche fréquemment des signaux FM/QFC avec une cassure marquée (figure 93a). La distinction entre ce groupe et H. savii en FM aplanie... ».
- ❖ p. 161 : rajouter après la dernière phrase : « ... l'identification de ces deux espèces est donc aisée. Certaines circonstances fugaces où ces grandes espèces longent un obstacle linéaire (lisière ou sol) peuvent rendre la diagnose plus complexe, et même produire un timbre miaulé proche de celui des Oreillards en milieu ouvert (voir son 3.50a). »
- ❖ p. 162: haut de page; remplacer « son DVD 3.33 » par « son DVD 3.3 ».
- p. 162 et suivantes : rajouter après le son 3.35 les § suivants :

son 3.35a : séquence d'un individu d'*E. nilssonii* en chasse active au bord d'un lac en milieu ouvert. Les QFC, sur 28-29 kHz de FME et d'une durée de 15 à 17 ms, sont

dominantes en phase de croisière et reprennent juste après la phase de capture. Enregistrement : Jean-François Desmet. »

**son DVD 3.36a**: séquence débutant par des signaux QFC à bande moyenne puis par des FM aplanie à bande étroite, sur 26-27 kHz; on constate une alternance irrégulière de FME, mais dont l'écart est faible (< 1 kHz le plus souvent : il est utile d'écouter en hétérodyne avec le virtual bat detector de BatSound pour bien faire la différence avec *N. leisleri* par ex.). Une QFC basse juste avant l'approche est intrigante (phénomène déjà enregistré chez *N. lasiopterus*, voir **son DVD 3.48**) et pourrait révéler un souci de détection d'arrière plan lointain ou une stratégie de brouillage vis-à-vis d'une proie tympanée. Le rythme rapide de la dernière partie en QFC sans alternance ne convient pas à un transit passif de *N. leisleri* sans alternance, et de plus, les durées sont supérieures à 20 ms : *V. murinus*; niveau de confiance : probable à certain. Enregistrement : Jean-François Desmet.

son 3.36b: cette séquence commence par des signaux QFC de 17 à 18 ms, sur environ 23 kHz, sans alternance mais avec de légères variations de LB et FME, indiquant une recherche active en milieu ouvert: tous les éléments sont réunis dès le début pour conclure *V. murinus*; certaines QFC par la suite atteignent 20 ms de durée, ce qui ne laisse plus aucun doute. Les phases d'approche en FM aplanie, prises seules, n'ont par contre aucun élément distinctif et tombent dans la catégorie des Sérotules.

**son 3.36c :** un individu de Sérotine commune chasse en lisière des grands arbres d'un parc arboré. Tous les signaux sont en FM aplanie, avec une amorce progressive (due à la pente douce FM en début de signal et à l'augmentation très progressive de l'intensité, ce qui peut se vérifier sur oscillogramme), y compris lorsque le rythme devient plus lent entre 5 et 15 s. A l'écoute de la séquence en hétérodyne sur BatSound, le rythme « jazzy » irrégulier typique de l'espèce est présent même dans les phases de recherche active.

son 3.37a: signaux QFC longue durée (18 à 21,5 ms, ce qui est trop long pour *N. leisleri* en transit) avec une FME aux environs de 22 kHz; l'amorce est explosive. Une légère augmentation de la récurrence en première moitié de séquence indique une curiosité de l'animal peu compatible avec un transit passif (ce qui élimine *E. serotinus*). La localité géographique (Espagne, Extremadure) rend *V. murinus* peu probable, d'autant que certaines FT sont en dessous de 21 kHz. Cette séquence est typique d'*E. isabellinus* lorsqu'elle pratique son mode de chasse classique (au moins au crépuscule) très aérien, avec de fréquentes séries de QFC longue durée; par contre lorsqu'elle se rapproche des obstacles, ses signaux FM aplanie sont en recouvrement avec ceux des autres espèces, *E. serotinus* notamment. *E. isabellinus*; niveau de confiance : certain.

son 3.37b: longue séquence illustrant un comportement d'*E. isabellinus* en chasse active au crépuscule en milieu ouvert, le long de la rive en pente douce, à boisement épars, d'un grand plan d'eau (barrage sur le Guadalquivir, Sierra de Cazorla, Andalousie). Le rythme (à l'écoute en hétérodyne sur BatSound) est assez rapide et régulier dans les phases de croisières, avec assez souvent des signaux groupés par paires lorsque la récurrence est un peu plus lente; de nombreuses phases d'approche et tentatives de captures indiquent une bonne densité de proies. Tous les signaux sont en FM aplanie vers 25 kHz, en recouvrement total avec *E. serotinus* donc. Mais certains ont une LB faible (env. 7 kHz) avec une légère amorce explosive audible en expansion de temps, et beaucoup présentent une cassure anguleuse (au début du signal pour les LB étroites, vers le milieu pour les LB plus larges) au lieu d'une courbe régulière : ce critère est typique des espèces QFC types, ce que n'est pas *E. serotinus*.

son 3.37c: longue séquence illustrant le comportement d'*E. isabellinus* en chasse active au crépuscule en fond de vallon le long d'une pente rocheuse escarpée à boisement épars (vallée du Tajo au Salto del Gitano, Monfrague, Extremadure). Plusieurs individus sont présents, et un Molosse de Cestoni apparaît vers 67 s. Le rythme (à l'écoute en hétérodyne sur BatSound) varie selon les individus; dans les phases lentes on retrouve les signaux groupés par paires ponctuant des phases assez régulières. La majorité des signaux est en FM aplanie, avec certains présentant une cassure anguleuse caractéristique des espèces QFC; à partir de 5520 ms on remarque quelques signaux débutant par une courte courbure convexe, leur donnant une forme sigmoïde: cette forme n'a jamais encore été notée chez *E. serotinus*. Des QFC à bande large apparaissent à plusieurs reprises (après 13800 ms, 53400 ms, 79300 ms, etc.), avec des amorces nettement explosives à l'écoute en expansion de temps. Après 170 s, plusieurs longues poursuites de proies s'enchaînent, laissant supposer des tentatives de capture de proies tympanées.

**son 3.41a :** les premiers signaux de cette séquence sont des QFC courtes (environ 10 ms) dans la gamme des 25-27 kHz de FME, avec une alternance irrégulière de structure, de FME, d'intensité : il s'agit bien de *N. leisleri*. L'individu se rapproche de la canopée pour la longer un moment (sans doute à la recherche de proies volant près du feuillage), en produisant uniquement des FM aplanies tronquées dont la largeur de bande atteint presque 40 kHz pour une FME d'environ 30 kHz sur certains signaux. Sans les signaux QFC du milieu ouvert, cette séquence resterait dans le groupe des « sérotules ».

**son 3.41b**: cette séquence débute par un signal QFC de 7,7 ms sur 27 kHz: dès ce premier signal l'identification de l'espèce est certaine: *N. leisleri*. Par la suite, après une phase d'approche en FM aplanie qui n'ont aucun caractère distinctif, ce critère se confirme avec des valeurs de durée encore plus faibles (par exemple 5,6 ms à 6890 ms). Cette spécialisation de *N. leisleri* pour les QFC de durées courtes (contraires à la logique de détection à longue distance nécessaire à une espèce de haut vol rapide), est indicatrice d'une stratégie possible de discrétion vis-à-vis des lépidoptères tympanés qui réagissent moins aux signaux de courte durée. Enregistrement: Jean-François Desmet.

son 3.41c: après un long silence, apparaît sans préliminaires un signal QFC très intense sur 25 kHz environ, suivi d'une longue phase d'approche et d'une tentative de capture (vers 4200 ms): la Noctule de Leisler chasse les lépidoptères en « salves surprises » (voir § *Nyctalus leisleri* du chapitre 5, p. XXX). Dans cette séquence, on compte six poursuites successives, qui peuvent correspondre à des proies qui tentent de s'échapper ou/et à des tentatives de captures successives sur des proies différentes.

**son 3.43a :** longue séquence de plusieurs individus de *N. noctula* chassant au-dessus d'un étang au crépuscule. Les différences de hauteur de vol entraînent autant de schémas rythmiques et structurels, de la recherche passive avec alternance de QFC basses et FM aplanies, aux FM d'approche à LB plus ou moins grandes. Vers la fin de la séquence, un seul individu est présent, en vol non loin d'une lisière, et ses QFC courtes (9 à 10 ms pour certaines) sur 20-22 kHz rappellent celles de *N. leisleri*, mais sur des FME plus basses que cette dernière. »

son 3.48a: séquence de N. lasiopterus volant en sous-bois (futaie irrégulière mature de chênes et hêtres) pour rejoindre son gîte en cavité d'arbre, un 24 mai à 23h50. Les signaux courts (4 à 5 ms) sont de structure FM à courbure concave régulière, avec une LB < 30 kHz et une FT < 20 kHz; le timbre est légèrement miaulé mais la confusion avec un Oreillard peut être évitée grâce au rythme souvent rapide (il y a même une approche vers 6,5 s) croisé avec tous les autres éléments: un Plecotus n'utilise le timbre miaulé sur fréquences basses qu'en milieu ouvert avec des durées > 5 ms.

- **son 3.49a**: extrait d'une séquence typique de *T. teniotis* en chasse nocturne de haut vol (ici au-dessus d'une vallée des Asturies en Espagne, lors d'une nuit douce de début novembre). Le rythme est lent et assez régulier avec des intervalles de 500 à 600 ms en moyenne, avec une légère accélération sur quelques signaux vers 23 s. Tous les signaux sont des QFC planes d'environ 20 ms.
- **son 3.50a**: cette séquence commence par une longue série de signaux FM très courts, à faible largeur de bande, sur 20 kHz de FME environ; le timbre est nettement miaulé, ce qui nous fait penser de suite à un Oreillard en milieu ouvert. Mais quelque chose ne correspond pas dans le comportement: le rythme est trop rapide, et va même en croissant; il s'agit bien d'une approche; or un Oreillard en approche ne serait pas sur des fréquences aussi basses. Après la phase d'approche, le rythme ralentit, les signaux se rallongent et le timbre change: il s'agit bien d'une grande espèce à FME basse, et les mesures de FME x LB nous donnent uniquement *T. teniotis*; cet individu vient de boire à la surface d'une mare.
- ❖ p. 165 : 2<sup>e</sup> alinéa (« en milieu ouvert »), lignes 4 à 6 ; ajouter : « pour *P. kuhlii* et 39-40 pour *P. nathusii* (en zone de sympatrie avec *P. kuhlii*, plus bas ailleurs), 42-48 (l'amplitude est plus grande que chez les autres espèces, avec deux groupes de FME sur env. 43 et 47 kHz) pour *P. pipistrellus*, 50-52 pour *M. schreibersii* (qui ne produit pas de QFC plane), 50-53 pour *P. pygmaeus*; ».
- p. 166 : § Cas particuliers ; insérer entre les 2<sup>e</sup> et le 3<sup>e</sup> alinéa, l'alinéa suivant : « Ces deux derniers exemples montrent qu'une certaine prudence doit être de mise dès que des émissions sonar QFC et FM aplanie entre 32 et 38 kHz sont captées ; il semble possible que P. nathusii et P. kuhlii puissent décaler leurs gammes fréquentielles (peut-être dans le but d'éviter au mieux le recouvrement de leurs niches acoustiques) habituelles notamment dans les régions proches de l'Atlantique où ces deux espèces sont de manière plus ou moins saisonnière en présence l'une de l'autre ; d'autant que dans ces régions, si *H. savii* est jugée absente ou rare, des individus erratiques peuvent apparaître rendant encore plus complexe la tache de l'identificateur. Des examens de courbures des signaux dont la largeur de bande se situe entre 2 et 15 kHz montrent des différences entre ces trois espèces qu'il peut être intéressant d'utiliser en complément des autres critères (mesures, comportement, contexte...) : sur plusieurs dizaines de séquences vérifiées, une majorité de signaux d' H. savii montre une cassure en début de signal alors que chez P. kuhlii on note une courbure plus régulière et plus décalée vers le centre du signal; P. nathusii montre une configuration proche de celle d' H. savii (voir spectrogrammes dans fichier xls « Identification\_Hypsugo-Pipistrellus-Miniopterus » du DVD). ».
- p. 166 : § Cas particuliers ; insérer après le 3<sup>e</sup> alinéa, l'encadré suivant :

# Le recouvrement de niches acoustiques : une contrainte pour les espèces QFC et FM aplanie ?

Les chiroptères utilisent un arsenal de filtres neuronaux qui évitent les interférences entre leurs propres émissions sonar et leur environnement sonore; la reconnaissance de leurs propres échos est donc en théorie peu perturbée par les émissions environnantes des autres chiroptères. Plusieurs observations (au sein du genre *Pipistrellus* notamment) viennent cependant nuancer ces déductions issues de travaux en laboratoire:

- la niche acoustique fréquentielle d'une espèce donnée est plus étendue lorsqu'elle est mesurée sur des individus évoluant en groupes que sur des individus isolés ;
- cette niche acoustique peut également s'étendre en situation allopatrique et se restreindre en situation sympatrique ; quelques exemples :
  - O *P. nathusii* semble fréquemment se cantonner au-dessus de 38 kHz dans la zone de répartition de *P. kuhlii* alors qu'elle descend couramment plus bas (QFC 34-35 kHz) au nord de cette zone ;
  - o *P. kuhlii* dans l'ouest de la France (où *P. nathusii* est fréquente) semble plus fréquemment qu'ailleurs émettre entre 33 et 36 kHz en activité de chasse ;
  - o toujours à proximité du littoral atlantique, *P. pipistrellus* semble augmenter la fréquence de ses QFC (46 à 50 kHz) là où *P. nathusii* est bien présente (Ouvrard, comm. pers.);
  - o dans le sud-est de la France (où P. pipistrellus et P. pygmaeus atteignent des densités proches dans plusieurs habitats), il n'est pas rare de rencontrer des Pipistrelles chassant en FM aplanie et QFC avec une FME vers 49-50 kHz: s'agit-il de l'une, de l'autre, d'une nouvelle espèce ? Cette dernière hypothèse résiste mal à l'examen du graphique de la figure 102 : comment une autre espèce FM aplanie trouverait-elle la place de s'insérer dans une niche fréquentielle inexistante? Le recouvrement entre P. pipistrellus et P. pygmaeus, et la présence de M. schreibersii ne laissent aucune place disponible. Il reste à trancher entre les deux Pipistrelles connues, et cela semble possible dans de nombreux cas si l'on prend en compte l'hypothèse de compétition de niches fréquentielles : comme plusieurs interactions observées sur le terrain semblent le montrer, la présence d'un groupe en chasse, appartenant à une seule de ces deux espèces, amène les individus à se décaler et déborder au-delà (jusqu'à 50 kHz en FM aplanie pour P. pipistrellus) ou en deçà (jusqu'à 48-49 kHz en FM aplanie pour P. pygmaeus) de leur gamme habituelle ; mais que l'autre espèce arrive sur le même terrain de chasse, et en quelques minutes le débordement fréquentiel de la première arrivante se réduit, et chaque espèce se cantonne dans sa gamme de part et d'autre de 50 kHz. Ainsi, lorsque nous mesurons sur le terrain en hétérodyne des FME d'un groupe de pipistrelles en chasse entre 42 et 50 kHz, nous pouvons conclure que seule P. pipistrellus est présente ; si les mesures donnent des extrêmes entre 46-48 et 56 kHz (ou 49 à 52 kHz avec peu d'individus et des récurrences moyennes ou lentes) il ne s'agira que de P. pygmaeus (voir sons 3.54a et **3.54b** et leurs commentaires) ; et si l'éventail de FME va de 42 à 56 nous conclurons que les deux espèces sont présentes. Dans certaines régions d'Espagne comme l'Extremadure ou l'Andalousie (où P. pipistrellus est moins fréquente voire absente), P. pygmaeus peut descendre au moins jusqu'à 46-47 kHz; une étude (Montauban et al., 2021) réalisée dans le delta de l'Ebre a montré qu'en l'absence de P. pipistrellus, P. pygmaeus pouvait descendre jusqu'à 44 kHz de FME.

Ainsi les gammes fréquentielles peuvent localement ou ponctuellement subir des variations. Les contextes biogéographiques et comportementaux doivent donc être intégrés dans le processus d'analyse interprétative des mesures de signaux.

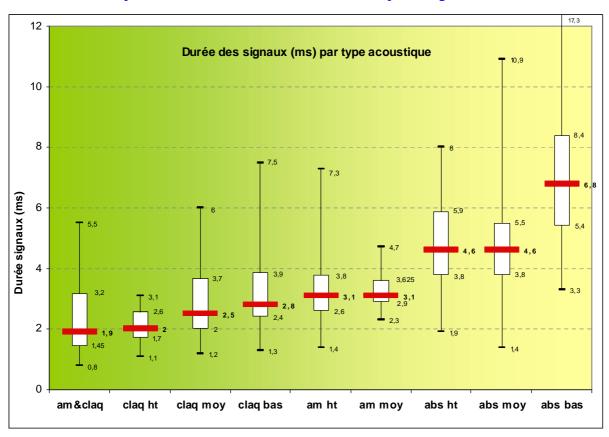
- ❖ p. 167 : ligne 6 ; remplacer « si tenté qu'elles ... » par « si tant est qu'elles ».
- ❖ p. 166 : remplacer les phrases suivantes « De plus il est important de pondérer le biais dû au déplacement de l'animal et la distorsion fréquentielle qui en résulte (effet Doppler) : la mesure de la fréquence du maximum d'énergie devra être majorée (si la chauve-souris s'éloigne du détecteur) ou minorée (si elle se rapproche) de 1 à 3 kHz selon la vitesse de l'animal et sa direction de vol par rapport au détecteur. Sur une séquence complète on apprécie assez bien ces éléments grâce au changement progressif ou dégressif de l'intensité des signaux. C'est ainsi que l'on peut mesurer une fréquence de 40 kHz sur une Pipistrelle commune qui s'éloigne en milieu ouvert (alors que sa fréquence réelle est de 42 kHz) ; la structure (QFC) et la récurrence (lente, typique d'un transit par ex.) éviteront dans ce cas de la confondre avec une Pipistrelle de Kuhl (mais pas avec une P. de Nathusius qui pratique couramment la QFC sur ces fréquences même en transit). Concernant ces espèces, la différenciation dans certains cas ne pourra se faire qu'en présence de cris sociaux qui eux sont discriminants à 100 % (voir chapitre IV.C.6). » par « De plus il est important de pondérer le biais dû au déplacement de l'animal et la distorsion fréquentielle qui en résulte (effet Doppler) ; ce déplacement est révélé par une variation croissante et/ou décroissante de l'intensité relative des signaux d'une séquence. Si la séquence montre une intensité croissante puis décroissante, on choisira de mesurer le ou les signaux médians les plus intenses, qui seront les moins distordus en fréquence. Si nous n'avons qu'une partie du déplacement, la mesure de la fréquence du maximum d'énergie devra être majorée (si la chauve-souris s'éloigne du détecteur) ou minorée (si elle se rapproche) d'environ 1 kHz pour une espèce de Noctule ou de Pipistrelle (la distorsion est positivement corrélée à la fréquence et à la vitesse de déplacement, deux paramètres généralement contradictoires chez les chiroptères : les espèces qui volent le plus vite émettent des FME basses) en QFC (la structure FM aplanie est plus tolérante, donc moins sensible à l'effet Doppler), et d'environ 2-3 kHz pour l'harmonique 1 d'un Rhinolophe. Pour donner un exemple : des QFC planes mesurées à 21 kHz sur un individu qui se rapproche du microphone seront légendés N. noctula plutôt que N. leisleri, car la FME réelle sera de 20 kHz. »

#### • p. 170 : § 2; modifier et ajouter comme suit :

Pour ce dernier groupe la prise en compte d'autres critères que les mesures de signaux est nécessaire :

- intégration des comportements acoustiques : *P. kuhlii* est une espèce FM/QFC alors que *P. nathusii* est une espèce QFC qui pratique cette structure même en chasse active : la présence de QFC dans une séquence de chasse caractérisée indique donc cette dernière :
- courbure des signaux sur spectrogramme : les signaux dont la largeur de bande se situe entre 2 et 15 kHz montrent chez *H. savii* une cassure en début de signal alors que chez *P. kuhlii* on note une courbure plus régulière et plus décalée vers le centre du signal ; *P. nathusii* montre une configuration proche de celle d' *H. savii* (voir spectrogrammes dans fichier xls « Identification\_Hypsugo-Pipistrellus-Miniopterus » du DVD).
- l'émission de cris sociaux n'est pas rares chez ces espèces sur leurs terrains de chasse ; or ils sont très différents entres ces deux Pipistrelles (voir chapitre IV.C.6) ;
- concernant *M. schreibersii*, *P. pipistrellus* et *P. pygmaeus*, nous détaillons ci-dessous un critère intéressant lié à la forme du signal; de plus les sons **DVD 3. n° 58 et 59** et leurs commentaires détaillent des particularités liés à l'intensité et la séquence de capture chez *M. schreibersii*.
- p. 175 : rajouter après le son 3.54 les deux § suivants :

- **son 3.54a**: séquence débutant par des QFC planes sur 50 kHz; *M. schreibersii* est écarté car il ne fait pas de QFC planes; *P. pipistrellus* peut-elle monter sur de telles FME avec une telle structure? Non, il s'agit bien de *P. pygmaeus*, et cet individu n'est pas seul: un congénère chasse en FM aplanie sur 56-57 kHz, puis un autre ensuite sur des fréquences intermédiaires. Ils sont assez éloignés les uns des autres mais se décalent quand même en FME, ce qui amène sans doute l'individu en recherche passive, au rythme le plus lent, à descendre jusqu'à 50 kHz.
- son 3.54b : sur cette séquence, les individus sont nombreux et rapprochés les uns des autres: une cacophonie de FM aplanies entre 50,5 et 61 kHz. La présence de P. pygmaeus ne laisse aucun doute mais que faire des signaux en dessous de 50 kHz? L'individu sur 50,5 kHz (signal à 90 ms par exemple) est en FM sigmoïde avec une LB > 50 kHz, ce qui signe habituellement la présence de *P. pipistrellus*; on remarque par ailleurs que plusieurs signaux FM aplanie tronquée (à 370 ms par ex.) se terminent par une courte FM descendante, mais on sait que P. pygmaeus et P. pipistrellus peuvent toutes deux présenter cette caractéristique. Plus loin, à partir de 6291 ms, un individu sur 49,5 kHz en FM aplanie, passe rapidement en QFC sur 49 puis 48 kHz; puis plus loin encore (8740 ms) il est sur 47 kHz, puis (9005 ms) sur 46 kHz! Tous les individus de cette séquence appartiennent pourtant à l'espèce P. pygmaeus. Cette scène est un bon exemple de compétition de niche fréquentielle, dans une zone (Andalousie, Espagne) où les populations de P. pipistrellus sont minoritaires (mais présentes : l'espèce a été contacté sur un autre site non loin de celui-ci), du comportement de P. pygmaeus qui lorsqu'elle chasse en groupe compact, déborde largement de sa niche fréquentielle habituelle, en empiétant sur celle de *P. pipistrellus*. Si cette dernière était présente en chasse sur le même site au même moment, sans doute deux phénomènes se produiraient : les individus de P. pipistrellus seraient sur leur gamme basse entre 42 et 45-46 kHz, et ceux de *P. pygmaeus* ne descendraient pas en dessous de 47 kHz par exemple.
- p. 176 : rajouter après le son 3.60 : son 3.60a : séquence de Minioptère en chasse dans une chênaie clairsemée. Après un silence, les premiers signaux entendus sont intenses (le premier est même plus intense que les suivants!) : l'individu devait voler sans émettre, car sinon quelques signaux préliminaires seraient forcément audibles ; ce comportement rappelle celui de N. leisleri lorsqu'elle cherche à surprendre des lépidoptères tympanés avec ses « salves surprises » en les alertant le plus tardivement possible (son 3.41c); s'ensuivent des signaux FM aplanie à récurrence rapide puis, sans véritable phase d'approche (juste trois signaux), une phase de capture (caractéristique par sa récurrence forte) en deux temps, indiquant sans doute que la proie a réagi à cette attaque. Les signaux qui suivent, après 3000 ms, sont typiques par la sonorité très « lissée » sans amorce explosive. Le même scénario se reproduit à 6500 ms. Vers 10600 ms on entend un autre trille, mais qui sort de nulle part : il ne peut venir d'aucun des deux individus qui produisent chacun deux FM aplanies au même moment; il s'agit donc d'un troisième individu dont les signaux sonar sont absents ou inaudibles, et ce trille peut aussi bien être une phase de capture qu'une émission à caractère social (les deux sont très proches chez cette espèce). Cette séquence illustre une technique de capture des lépidoptères tympanés par M. schreibersii, qui vise à rester discret lors de la phase de pré approche (silencieuse) puis à retarder la réaction de sa proie en supprimant ou réduisant la phase d'approche finale.
- ❖ p. 176 : sons DVD 3.61 & 3.63 : les commentaires de ces deux séquences sont inversés.


- ❖ p. 176 : rajouter après le son 3.65 : son 3.65a : deux individus de P. pipistrellus émettent en QFC sur 44 et 46 kHz ; l'un d'eux produit une phase d'approche puis de capture, et repart aussitôt en QFC sur 47 kHz. Cette scène illustre une entorse à la règle générale qui veut que P. pipistrellus (comme P. kuhlii) ne pratique la QFC plane qu'en transit ou recherche passive. Mais aucun schéma général n'est parfaitement rigide dans la nature et le comportement des individus : nous sommes un 29 septembre à 500 m d'altitude dans le Massif Central, et la température fraîche réduit le nombre de proies en activité ; les Pipistrelles sont donc en recherche passive, utilisant la QFC pour s'économiser (et parce que le milieu semi ouvert le permet), mais toute localisation d'une proie déclenche une rupture dans ce régime de basse dépense énergétique. Quelques trilles sociaux dans la séquence, illustrent sans doute quelques messages agonistiques en lien avec la compétition pour une faible provende.
- p. 177 : rajouter après le son 3.68 les § suivants :
  - **son 3.68a**: les FM aplanies du début de cette séquence sont dans la gamme fréquentielle commune à *P. kuhlii* et *P. nathusii*; mais à 6920 ms deux QFC planes apparaissent brutalement, avec une FME de 37-38 kHz. Plus loin à 8168 ms, une FM aplanie présente une cassure anguleuse, typique des espèces QFC type: il s'agit bien de *P. nathusii*. Nous sommes dans une forêt du nord de l'Allemagne, vers Cologne, où *P. kuhlii* n'a pas encore été répertoriée, et où *P. nathusii* est par contre bien présente: elle utilise alors la gamme fréquentielle disponible, de 34 à 41 kHz (voir encadré sur la compétition entre niches fréquentielles p. **170**). Enregistrement: Tanja Kessels.
- ❖ son 3.68b: séquence enregistrée en aveugle dans une zone géographique (Albères − 66) où *P. kuhlii* est abondante, et où *P. nathusii* est plus rare. Les premiers signaux sont des QFC non planes sur 39 kHz: *P. kuhlii* produit ses QFC dans une gamme inférieure à 38 kHz en règle générale, alors que *P. nathusii* est coutumière de ces fréquences; de plus, plus loin dans la séquence (23684 ms), un signal FM aplanie présente une cassure anguleuse, typique des espèces QFC type : donc *P. nathusii*. Plus loin (2400 ms) les signaux FM aplanies esquissent une courte FM terminale descendante, qui réapparaît de façon très nette et répétée après 4870 ms: cette caractéristique, sur des FM aplanies dont la partie QFC est égale à au moins la moitié de la durée totale du signal, n'est pas encore certifiée (en tous cas comme comportement courant) chez *P. nathusii*, alors qu'il est très régulier chez *P. kuhlii*. Voici donc un exemple de cas d'identification insoluble entre ces deux espèces, où des caractéristiques typiques (mais non exclusives à 100 % !) de l'une sont « copiées » par l'autre.
- ❖ p. 177: sons DVD 3.71; ligne 1; remplacer « séquence dans laquelle apparaît deux individus... » par « séquence dans laquelle apparaissent deux individus... ».
- ❖ p. 177 : rajouter après le son 3.72 : son 3.72a : séquence débutant par des signaux FM aplanie plus ou moins tronquée, dans la gamme de FME 38 à 41 kHz qui est commune à *P. kuhlii* et à *P. nathusii* ; vers 2,8 s le trille social sur 15 kHz, non doublé, élimine *P. nathusii* et ressemble au répertoire de *P. kuhlii*, même s'il est plutôt rapide pour cette dernière ; par contre les trilles lointains à partir de 7,8 s sont lents et bas (13 kHz), ce qui conforte *P. kuhlii*. L'individu émettant les signaux sonar est en chasse active près d'une lisière, d'où les signaux courts à large bande. A partir de 11 s un individu de *P. pipistrellus* apparaît, lui-même en chasse active, suscitant une production de plusieurs cris sociaux simples dont l'auteur est inconnu ; ils proviennent peut-être de *P. pipistrellus* puisqu'à 11370 et 11941 ms le cri social est simultané avec

- un signal sonar de l'individu de *P. kuhlii*; mais tout se complique puisqu'à 12850 ms cette fois c'est avec un signal sonar de *P. pipistrellus* que le cri social est recouvrant! La solution tient sans doute au fait que deux individus de *P. kuhlii* sont présents (à partir de 10,4 s), alors qu'un seul individu de *P. pipistrellus* est audible : c'est sans doute l'interaction entre les deux congénères de *P. kuhlii* qui provoque ces émissions sociales atypiques, et non une interaction entre espèces.
- ❖ p. 178: rajouter après le son 3.76: « son 3.76a: séquence de Vespère de Savi chassant activement dans une allée forestière en fond de vallon (Roubion, vallée de la Tinée, Mercantour). Aucun signal QFC n'est présent dans cette longue séquence : le feuillage est proche de chaque côté et la trajectoire de vol en dessous de la canopée. Les FME sont souvent aux alentours de 38 kHz, et les FM aplanies tronquées sont presque toutes sigmoïdes, avec une courte FM terminale : une signature connue chez P. kuhlii... Mais deux détails éliminent cette dernière espèce : vers 38000 ms les signaux FM de la phase d'approche terminent tous à 30 kHz, puis à partir de 41000 ms l'individu s'éloigne vers un milieu plus ouvert : le rythme se ralentit et corrélativement la LB et la FME diminuent jusque vers des QFC vers 33 kHz. H. savii peut donc pratiquer des FM sigmoïde sur des signaux courts à partie QFC tronquée. »
- ❖ p. 178 : dans l'ensemble du chapitre « IDENTIFICATION DES FM », remplacer le terme « sonorité » par le terme « timbre » (avec les conséquences de changement de genre, féminin *versus* masculin).
- ❖ p. 181 : § TIMBRE NASILLARD ; ligne 1 ; ajouter : « Mis à part quelques rares séquences d'*E. serotinus* en sous-bois (sons DVD 3.77a et 3.77b), cette sonorité particulière se retrouve uniquement... ».
- ❖ p. 181: § TIMBRE NASILLARD; § Circonstances d'émission; genre *Plecotus*, ligne 6; ajouter: « le timbre est peu ou pas nasillard mais reste très particulier (« miaulé ») à cause de caractéristiques spécifiques... ».
- ❖ p. 181 : deux dernières lignes ; modifier : « Chez B. barbastellus la courbe du signal peut être rarement concave (figure 113), le plus souvent convexe (figure 115) et parfois linéaire, alors qu'elle est toujours concave chez Plecotus spp.
- p. 182: fin du 1<sup>er</sup> §; remplacer « ... cette caractéristique ne se retrouve pas chez *Plecotus*. » par « cette caractéristique peut aussi s'observer chez *Plecotus auritus*. »
- p. 183 : remplacer le § « La fréquence terminale offre une analyse intéressante : son évolution en fonction de la durée des signaux est fortement décroissante chez P. auritus, de même chez P. macrobullaris mais dans une moindre mesure et avec des valeurs movennes plus faibles; au contraire chez P. austriacus elle reste relativement stable, suivant une pente nettement moins prononcée. Dans le cortège de cette constatation il était intéressant de positionner quelques signaux longues durées et basses fréquences (figures 116 et 120) de Plecotus sp récoltés en aveugle, dans des milieux très ouverts de plaine et de montagne (aucun individu marqué n'ayant malheureusement affiché ce comportement acoustique malgré de nombreuses heures de suivi); ces signaux suivent la tendance cohérente affichée par P. auritus et P. macrobullaris, étant au contraire en rupture avec celle de P. austriacus; il est donc probable (mais non encore démontré par l'observation directe), que ces signaux particuliers n'appartiennent pas à cette dernière espèce, des travaux de recherche sont encore nécessaires. » par « La fréquence terminale offre une analyse intéressante ; son évolution en fonction de la durée des signaux (figure 120) est continuellement décroissante chez P. auritus, descendant sous 10 kHz à partir de 7 ms de durée, alors

que chez P. macrobullaris elle semble se stabiliser aux environs de 15 kHz (voir son 3.92a); P. austriacus n'a jamais produit de signaux de plus de 8,5 ms au cours de l'étude, malgré de très nombreux contacts en chasse dans de grandes prairies : il est probable que ces longues durées sont peu ou pas pratiquées par cette espèce. Aucun des individus de *P. auritus* suivis après marquage, n'a traversé des vastes milieux très ouverts. Aussi, quelques signaux longues durées et basses fréquences de Plecotus sp. issus de deux séquences récoltées en aveugle dans ce contexte de milieu très ouvert, ont été rajoutés : ils peuvent être attribués de façon très probable à P. auritus grâce à plusieurs éléments concordants : le secteur géographique de plaine (ouest de la Haute-Vienne) incompatible avec P. macrobullaris; le comportement de transit caractérisé (vol linéaire rapide, signaux longs très intenses) et non de chasse en recherche passive comme le fait couramment P. austriacus dans ce type de milieu; le contexte de prairies encadrées de boisements où P. auritus est fréquemment capturé et où P. austriacus n'a jamais été contacté; les mesures de FME et de FT, en cohérence avec la tendance décroissante affichée par P. auritus, et au contraire en rupture avec celle de P. austriacus. »

- ❖ p. 183 : encadré bas de page, ligne 2 ; ajouter «le timbre est « miaulé », il n'est plus vraiment nasillard ... ».
- ❖ p. 186 : insérer avant le § « son DVD 3.78 » les deux § suivants : « son DVD 3.77a : séquence d'E. serotinus en sous-bois, avec des signaux FM à durée courte dont le timbre est légèrement nasillard ; sur une séquence courte et homogène comme celle-ci, la confusion avec les genres Plecotus et surtout Barbastella (car l'amorce est progressive) est possible. Mais ce comportement (par ailleurs rare) est de courte durée, le plus souvent précédé et/ou suivi de signaux plus typiques (comme les derniers signaux de cette séquence, qui amorcent une transition). son DVD 3.77b : séquence d'E. serotinus en sous-bois, avec des signaux FM à durée courte dont le timbre est légèrement nasillard ; l'individu produit une phase de capture puis une ressource près de la végétation dense ce qui occasionne une longue phase de rythme rapide ; les derniers signaux de la séquence redeviennent typiques de l'espèce.
- ❖ p. 186: § son DVD 3. n° 78, dernière ligne; remplacer « (voir FME < 35 kHz », page 194) par « (voir « Cas particulier des signaux « alternance » de B. barbastellus », page 190) ».</p>
- ❖ p. 188 : rajouter après le son 3.92 : « son 3.92a : séquence de *P. macrobullaris* en recherche passive au-dessus d'une pelouse d'altitude. Les signaux varient quelque peu en durée en fonction de la récurrence, les plus longs atteignent presque 11 ms. On remarque, sur le spectrogramme, que certains signaux mieux marqués débutent par une courbure convexe, ce qui n'a pas encore été noté pour les signaux sonar de *P. auritus* et *P. austriacus*. »
- ❖ p. 192 : avant-dernière ligne ; modifier : « A l'écoute d'une séquence en expansion de temps enregistrée depuis le sol (voir Chapitre 6) on note que le type A est presque toujours plus intense que le type B, ce dernier n'étant parfois pas audible sur une séquence faible d'un individu éloigné : on veillera alors à s'entraîner pour une reconnaissance auditive sans faille du type A seul. ».
- ❖ p. 194 : modifier § son DVD 3.95 : alternance régulière typique de *B. barbastellus* ; cet enregistrement effectué depuis le sol laisse entendre un type A plus intense que le type B. L'ensemble des critères permet une identification auditive certaine, sans aucune confusion possible (sauf cas particulier illustré par la séquence DVD 3.99).

- ❖ p. 194 : insérer après le § « son DVD 3.95 » le § suivant : « son DVD 3.95a : séquence alternée de *B. barbastellus* volant en sous-bois, enregistrée depuis un micro déposé à 25 mètres dans la canopée : le type B paraît plus fort au contraire des séquences enregistrées depuis le sol (voir Chap. 6, Ex. 1, Le sonar de la Barbastelle).
- ❖ p. 194 : rajouter après le son 3.101 : « son 3.101a : séquence d'individus de B. barbastellus sur leur terrain de chasse, avec émissions de cris sociaux divers. »
- ❖ p. 198 : rajouter en fin de § le texte suivant et la figure 126a : « ... bonne stabilité de ce lien pour une espèce donnée dans chaque situation de vol. La figure 126a montre cette tendance de distribution des types acoustiques en fonction de la durée des signaux (fortement corrélée à la distance aux obstacles, plus encore que les intervalles qui eux sont plus dépendants de la vitesse de vol pouvant être très lente chez les espèces manoeuvrables). Les types sont rangés par ordre de valeurs médianes croissantes de gauche à droite. Les types avec claquement final sont réservés aux durées courtes (milieux denses en obstacles), les types avec absence de pic sont réservés aux durées longues (milieux plus ouverts), les types avec amorce explosive sont utilisés dans les contextes intermédiaires. De même, les FT hautes correspondent aux durées plus courtes, et les FT basses aux durées plus longues.



**Figure 126a :** ce graphique (boîte à moustaches avec valeurs de durées des signaux en regard des types acoustiques ; avec médiane en rouge, 1<sup>er</sup> et 3<sup>e</sup> quartiles en blanc, minimum et maximum) montre la cohérence comportementale des types acoustiques. La durée des signaux est positivement corrélée à la distance aux obstacles. On observe que plus les durées sont courtes (donc plus la distance est faible), plus le claq et les FT hautes sont utilisées ; plus les durées sont longues (donc plus la distance est grande), plus l'abs et les FT basses sont utilisées. Cette tendance est visible malgré les spécialisations fortes de certaines espèces qui utilisent le même type acoustique dans toutes les circonstances (par exemple : *M. alcathoe* avec l'am ht, *M. nattereri* avec le claq bas).

- ❖ p. 198 : phrase en gras dans dernier §, rajouter : « ... Bien entendu le comportement de chaque individu ne rentre pas dans un moule rigide, et tel ou tel type peut parfois sortir de la gamme de récurrence indiquée... »
- p. 198: insérer, en fin du 3<sup>e</sup> § (après « ... Cette caractéristique permet de mieux discerner le comportement des individus contactés en aveugle. »), l'encadré suivant :

# Les transitions entre types acoustiques, ou comment rentrer dans l'intimité comportementale des espèces du genre *Myotis*.

Les types acoustiques sont reliés à des phases comportementales de vol : curiosité plus ou moins active durant la phase de croisière, phases initiale ou terminale d'approche.

Mais pour plusieurs espèces, nous avons constaté que le type acoustique est différent selon que la phase d'approche concerne un obstacle à éviter, ou une proie à capturer : il devient ainsi possible à l'observateur, uniquement par l'écoute des signaux expansés, d'appréhender avec une finesse insoupçonnée la finalité de chaque phase d'augmentation de la récurrence.

<u>Différences de transition entre 1) phase de croisière – approche de proie et 2) phase de croisière – approche d'obstacle</u>:

*M. bechsteinii*: 1) abs moy – abs moy ; 2) abs moy – claq moy/ht.

M. brandtii: 1) abs moy (ou am&claq) – abs moy (ou am&claq); 2) abs moy (ou am&claq) – claq moy (ou am ht, ou claq ht).

*M. daubentonii*: 1) abs moy – abs moy ; 2) abs moy – (am moy) claq moy.

M. emarginatus : pas de difference constatée (claq ht dominant toutes phases d'approche).

M. myotis/oxygnathus: 1) abs bas ou moy – abs moy; 2) abs bas ou moy – (signaux hte FME) claq moy/bas.

*M. mystacinus*: 1) abs moy (am moy) – am ht; 2) abs moy (am moy) – claq moy.

*M. nattereri/escalerai* : pas de difference constatée (claq bas dominant dans tous comportements).

- ❖ p. 198 : dernier §, ligne 3 ; enlever le « s » à la fin de « espèces » dans « la moyenne est de 3,7 types par espèces (elle est de 4,1 si on enlève *M. escalerai* et... ».
- p. 198 : remplacer valeurs tableau 16 :

|            | Durée                    |                     |                     |        |
|------------|--------------------------|---------------------|---------------------|--------|
| Structure  | Répartition de l'énergie | fréquence terminale | intervalles<br>(ms) | E-type |
| FM abrupte | claquement final         | haute (> 30)        | 58,4                | 21,9   |
|            |                          | moyenne (23 à 30)   | 66,8                | 34,1   |
|            |                          | basse (< 23)        | 66,6                | 35,8   |
|            | amorce & claquement      | haute & moyenne     | 76,0                | 19,0   |
|            | amorce explosive         | haute (> 30)        | 85,7                | 54,6   |
|            |                          | moyenne (23 à 30)   | 87,2                | 25,7   |
|            | absence de pic           | haute (> 30)        | 96,0                | 37,3   |
|            |                          | moyenne (23 à 30)   | 94,3                | 36,9   |
|            |                          | basse (< 23)        | 134,2               | 50,5   |

#### • p. 199 : remplacer contenu complet tableau 18 :

| Comportement de vol  | Fin de phase d'approche<br>(proie / obstacle), ou dans<br>feuillage | Début de phase d'approche<br>(proie / obstacle), ou près<br>feuillage | Milieu semi-ouvert                                   | Milieu ouvert<br>(recherche passive /<br>transit) |
|----------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|
| Distance obstacles   | (< 1 m)                                                             | (1 à 3 m)                                                             | (3 à 5 m)                                            | (> 5 m)                                           |
| Durée<br>intervalles | moy. 40 à 50 ms<br>(20 à 70 ms)                                     | moy. 50 à 70 ms<br>(50 à 80 ms)                                       | moy. 80 à 100 ms<br>(60 à 120 ms)                    | 120 à 250 ms                                      |
| M. alcathoe          | am ht                                                               | am ht                                                                 | am ht                                                | am ht / (abs ht)                                  |
| M. bechsteinii       | abs moy / claq ht                                                   | abs moy / claq moy                                                    | abs moy, (abs bas), (am ht)                          | abs bas / abs bas                                 |
| M. blythii           | abs moy /<br>claq moy, bas (ht)                                     | abs moy /<br>claq moy-bas (am ht)                                     | am ht, abs bas, (abs moy)                            | abs moy, (abs bas) / abs moy                      |
| M. brandtii          | abs moy, am&claq /<br>am&claq, claq moy (ht)                        | abs moy, am&claq / am ht,<br>claq moy, am&claq                        | abs moy, (claq moy),<br>(am&claq)                    | abs moy / abs bas                                 |
| M. capaccinii        | abs moy, am ht /<br>abs moy, am ht                                  | abs moy, am ht /<br>abs moy, am ht                                    | abs moy, ht                                          | abs ht, abs moy /<br>abs ht, abs moy              |
| M. dasycneme         | abs moy /<br>abs moy, (claq moy)                                    | abs moy                                                               | abs moy                                              | FM-QFC-FM, abs<br>moy / abs moy                   |
| M. daubentonii       | abs ht, abs moy / abs ht, abs moy, claq moy                         | abs ht, abs moy /<br>abs ht, abs moy, (am moy)                        | abs moy, (ht)                                        | abs ht-moy / abs ht                               |
| M. emarginatus       | claq ht / claq ht                                                   | am ht, (claq ht) /<br>am ht, (claq ht)                                | am ht, (claq ht), (abs ht)                           | abs ht, (claq ht) / abs<br>ht                     |
| M. myotis            | claq moy /bas                                                       | abs moy / abs moy, abs-am-<br>claq-ht-lent&irrég, (claq moy)          | abs bas, abs moy                                     | abs bas / abs bas                                 |
| M. mystacinus        | am ht / claq moy                                                    | am ht / am ht                                                         | am moy, abs moy, (am ht)                             | abs moy, (am moy) / abs moy                       |
| M. nattereri         | claq bas / claq bas                                                 | claq bas / claq bas                                                   | claq bas, abs bas(moy),<br>abs-am-claq-ht-lent&irrég | abs bas, claq bas /<br>abs bas                    |

- ❖ p. 199 : dernier § (en gras) ; modifier : « Trois règles générales doivent alors être appliquées : 1) lorsqu'un pic existe il est souvent plus facile de le mettre en évidence lorsque l'animal s'approche ou s'éloigne et que le niveau d'intensité global des signaux n'est pas au maximum, révélant mieux l'amorce ou le claquement ; 2) les signaux faibles provenant d'un individu éloigné peuvent donner une fausse sensation de pic d'énergie, sans doute due au fait que seule la zone de FME est restituée, « compactant » ainsi chaque signal ; 3) si l'incertitude persiste ne pas hésiter à classer la séquence en *Myotis* sp ; une telle décision valorise la probité de son auteur, alors qu'une erreur d'identification le discrédite. ».
- ❖ p. 199 : Tableau 17, ligne M. mystacinus, colonne « Milieu semi-ouvert » ; remplacer « am ht/moy/(abs moy) » par « (am ht)/am moy/abs moy ».
- ❖ p. 200 : § son 3.104 ; corriger : « son 3.104 : les signaux hésitent quelque peu entre une légère amorce explosive à peine perceptible (signaux 1 et 3 par exemple), et l'absence haute typique (signaux n° 2, 7, 9 et suivants) ; cette séquence sera classée en abs ht, mais on tiendra compte de la capacité de l'individu à produire aussi de l'am ht dans le choix des espèces possibles (ce qui éliminera *M. daubentonii*). »
- ❖ p. 202 : § Claquement final hautes fréquences (claq ht), ligne 6, rajouter : « ... peut aussi être conservé lors d'émissions de croisière à récurrence plus faible (intervalles > 80 ms), car cette espèce très manoeuvrable peut voler lentement en milieu encombré et produire ainsi des signaux d'approche avec un rythme de phase de croisière. Chez M. blythii, M. brandtii et M. bechsteinii... »

- ❖ p. 202 : § Claquement final hautes fréquences (claq ht), rajouter à la fin du § (retour à la ligne après « ... ce que M. brandtii fait très rarement).), en gras, la phrase suivante : « Attention au piège : toute séquence courte (1 à 5 s) comprenant une succession avec un rythme lent et souvent irrégulier, de signaux hautes fréquences avec (am et/ou claq) et/ou sans (abs) pics d'énergie, peut correspondre au comportement de contournement d'obstacles connu chez M. myotis/blythii/punicus (au sein d'une séquence abs moy ou bas) ou chez M. nattereri (au sein d'une séquence abs bas ou claq bas) ; voir les monographies consacrées à ces espèces p. 243 et p. 245. »
- ❖ p. 206 : § Claquement final basses fréquences (claq bas), § 3, ligne 3 ; supprimer : « le milieu de vol, la récurrence et la durée de ses signaux ; c'est pour cette raison qu'une dichotomie a été faite pour cette espèce entre milieu ouvert et sous-bois, les caractéristiques des signaux correspondants étant sensiblement différentes. Ces deux espèces se caractérisent... »
- ❖ p. 206 : § FME > 35 kHz − Claquement final basses fréquences (claq bas) ; ligne 15 ; rajouter « ... étant sensiblement différentes. Ces deux espèces se caractérisent par leurs signaux à large bande avec une forme la plupart du temps convexe, la courbure étant souvent plus prononcée dans la partie supérieure (> 100 kHz) ; la forme devient parfois sigmoïde avec l'allongement de la durée des signaux et des intervalles, la différence avec les signaux claq bas sigmoïdes des grands Myotis est alors très difficile. Par précaution on ne conclura M. nattereri qu'avec une série de signaux où la forme convexe est bien visible (lorsqu'elle reste convexe malgré un ralentissement du rythme la certitude est encore plus grande), ou avec des valeurs de FME et de LB respectivement supérieures à 55 et 100 kHz.
  - M. myotis et M. oxygnathus n'utilisent le claq bas que lors des phases d'approche d'obstacles, mais ce comportement peut durer plusieurs secondes lorsque les individus sondent le sol ou la végétation herbacée; le rythme est donc généralement rapide, mais parfois irrégulier avec des intervalles longs disposés au sein des séries typiques d'approche. Ces deux espèces se caractérisent par leurs signaux à LB inférieure à 100 kHz, avec une forme presque toujours linéaire ou sigmoïde; voir spectrogrammes dans feuille « claq bas » du fichier xls « Identification\_Myotis » du DVD. ».
- ❖ p. 208 : § Amorce & claquement (am & claq), ligne 1 ; rajouter : « Etant le seul type acoustique monospécifique lorsqu'il est pratiqué en phase de croisière avec un rythme de recherche active (voir monographie de *M. brandtii* p. 240), l'am & claq est supposé ne poser aucun problème d'identification. »
- **❖ p. 208 :** § *FME* > 35 kHz − Amorce & claquement (am & claq), § 3 ; modifier : « L'analyse (**figures 135 et 136**) a inclus de manière logique les signaux-types... ».
- ❖ p. 209 : § Amorce & claquement (am & claq), rajouter à la fin du § (retour à la ligne après « ... ont été rajoutés pour montrer leurs valeurs généralement plus élevées.), en gras, la phrase suivante : « Attention au piège : toute séquence courte (1 à 5 s) comprenant une succession avec un rythme lent et souvent irrégulier, de signaux hautes fréquences avec (am et/ou claq) et/ou sans (abs) pics d'énergie, peut correspondre au comportement de contournement d'obstacles connu chez M. myotis/blythii/punicus (au sein d'une séquence abs moy ou bas) ou chez M. nattereri (au sein d'une séquence abs bas ou claq bas) ; voir les monographies consacrées à ces espèces p. 240, 243 et 245. »
- ❖ p. 210 : § Amorce explosive hautes fréquences (am ht), ligne 1, rajouter « ... sur les six concernées est spécialiste exclusive (ou presque, voir monographie p. 239) de ce type acoustique ; c'est d'ailleurs un cas unique... »

- ❖ p. 211: § Amorce explosive hautes fréquences (am ht), rajouter à la fin du § (retour à la ligne après « ... pour une utilisation possible de l'am ht chez cette espèce en activité de chasse).), en gras, la phrase suivante : « Attention au piège : toute séquence courte (1 à 5 s) comprenant une succession avec un rythme lent et souvent irrégulier, de signaux hautes fréquences avec (am et/ou claq) et/ou sans (abs) pics d'énergie, peut correspondre au comportement de contournement d'obstacles connu chez M. myotis/blythii/punicus (au sein d'une séquence abs moy ou bas) ou chez M. nattereri (au sein d'une séquence abs bas ou claq bas) ; voir les monographies consacrées à ces espèces p. 243 et p. 245. »
- ❖ p. 211 : rajouter après le son 3.142 : « son 3.142a : M. alcathoe volant en sous-bois, d'abord près du feuillage en am ht, puis à partir de 1,8 s dans une partie de futaie claire aux troncs espacés : l'amorce s'estompe sur la plupart de signaux, pour disparaître sur quelques-uns (dont la FT descend en dessous de 40 kHz : les durées de signaux sont alors supérieures à 4 ms et celles des intervalles sont de 180 à 200 ms) et devenir de l'abs ht ; ce schéma recommence à partir de 8,5 s après une phase à récurrence plus rapide où les FT sont entre 40 et 50 kHz.
- ❖ p. 215 : remplacer l'ensemble du paragraphe Absence de pic hautes fréquences (abs ht) par : « Ce type est utilisé en recherche passive ou en transit en milieu ouvert pour la plupart des espèces concernées (*M. capaccinii*, *M. daubentonii*, *M. emarginatus*) ; il en résulte une durée moyenne à longue, avec une énergie assez bien répartie tout au long de la largeur de bande, restituant en expansion de temps un son « lissé ».

*M. capaccinii* peut émettre en abs ht lors de phases de chasse au-dessus de l'eau ; que ce soit en transit au-dessus d'une garrigue et d'un maquis ou en chasse sur l'eau (vol non rasant, à plus d'un mètre de hauteur moyenne), les signaux abs ht de cette espèce sont remarquables par leur durée.

M. daubentonii pratique souvent les signaux abs ht (débordant parfois en dessous de 30 kHz de FT, surtout en transit) dès qu'il ne chasse plus au ras de la surface de l'eau : que ce soit en transit en milieu ouvert (signaux souvent plus courts et à FT plus basse que ceux de M. capaccinii, à FME et LB inférieures à ceux de M. emarginatus), ou en chasse en lisière et en sous-bois (durée, FT et LB souvent plus faibles et FME souvent plus haute que pour M. capaccinii).

*M. emarginatus* produit ses signaux abs ht en transit ou en recherche passive, reprenant l'am ht ou le claq ht dès qu'il se rapproche de la végétation.

M. nattereri utilise l'abs ht souvent en milieu forestier, sur de courtes (1 à 5 s) séries à rythme lent et généralement irrégulier, encadrées par le claq bas ou l'abs bas. La FME souvent très haute et la rythmique particulière évitent généralement toute confusion avec M. capaccinii, M. daubentonii et M. emarginatus. Les critères fréquentiels, la durée et la courbure des signaux sont très variables d'un signal à l'autre au sein d'une même série, et cette variabilité s'étend aussi aux pics d'énergie : si l'abs est souvent de mise, il n'est pas rare que des pics (am, claq, am & claq) apparaissent sur un ou plusieurs signaux (comportement que l'on retrouve aussi chez les grands Myotis); ainsi, le choix simplificateur de cantonner ces signaux uniquement dans l'abs ht pour M. nattereri, ne doit pas faire oublier que tous les types acoustiques à hautes fréquences terminales peuvent se rencontrer dans ces séries courtes à rythme lent, et que les valeurs mesurées pour le type abs ht restent valables lorsque des pics d'énergie apparaissent.»

❖ p. 217 : § sous figure 149 ; ligne 4 ; rajouter : « …par ses valeurs de FME très hautes ; la durée et la courbure des signaux sont très variables. »

- ❖ p. 217 : rajouter après § « son DVD 3.154 » le § suivant : « son DVD 3.154a : longue séquence abs ht et claq bas de *M. nattereri* (voir commentaire détaillé dans fichier PDF du DVD « Commentaires\_sequences\_expansion x 10 »).
- ❖ p. 218: § FME > 35 kHz Absence de pic moyennes fréquences (abs moy); ligne 9; remplacer: « M. oxygnathus ne figure pas dans ce type, mais il peut pratiquer, même en milieu ouvert, des séries généralement courtes de signaux dont la FT est supérieure à 23 kHz (la durée est alors comprise entre 7 et 9 ms; voir section suivante: abs bas). » par « M. oxygnathus disperse le plus souvent des signaux abs moy au sein de séquences abs bas mais il peut pratiquer, en milieu ouvert, des séries complètes de signaux dont la FT est supérieure à 23 kHz (la durée est alors comprise entre 8 et 11 ms, ce qui est discriminant). ».
- ❖ p. 218: § FME > 35 kHz Absence de pic moyennes fréquences (abs moy); ligne 17; rajouter: « ... de sous-bois dense ou lors d'un vol rasant le sol; rarement une courte série de signaux abs ht est produite, toujours avec un rythme (80 à 240 ms d'intervalles) lent et irrégulier (son DVD 3.173a). ».
- ❖ p. 218 : § 4 ; compléter : « Le nombre d'espèces concernées et la convergence forte dans les circonstances d'émissions génèrent un recouvrement très important des variables mesurées. Les quelques possibilités d'identification spécifique concernent des extrêmes (FT basse chez M. bechsteinii, LB grande chez M. brandtii et faible chez M. capaccinii et M. dasycneme) croisés avec des critères comportementaux (récurrence, transition de types). Cependant on remarque deux groupes de FME de part et d'autre du seuil des 45 kHz environ ; en dessous nous avons M. mystacinus (qui n'utilise ce type qu'en transit, donc sans aucune phase d'approche), M. myotis (usage ponctuel en milieu encombré) et M. bechsteinii (usage très courant en chasse active) ; au-dessus nous avons M. brandtii (usage souvent mêlé d'am & claq) et M. daubentonii (usage permanent en chasse en lisière ou sous-bois) : ainsi le comportement permet souvent d'accorder une bonne probabilité à l'une ou l'autre de ces espèces au sein de chacun des deux groupes fréquentiels. ».
- ❖ p. 218 : avant-dernier § avant la liste de sons ; insérer en fin du § : « ... corrélée à un rythme plus lent et surtout plus irrégulier ; chez *M. dasycneme*, la LB et la FME diminuent fortement. ».
- ❖ p. 219 : rajouter le § suivant après celui du son 3.166 : « son 3.166a : M. mystacinus en vol dans une petite clairière, non loin de la lisière arborée ; mis à part quelques phases d'am moy (entre 8000 et 10000 ms par ex) la plupart des signaux sont en abs moy (entre 5000 et 7000 ms par ex aucune amorce n'est audible ; attention : la saturation de quelques signaux génère un craquement artefactuel à ne pas confondre avec un pic d'énergie). Sur de nombreux signaux on perçoit une légère amorce, si peu marquée que la frontière avec l'abs moy est ténue : on sent que l'animal « hésite » entre les deux. Vers 12000 ms on entend une phase de capture : le comportement acoustique de recherche passive en milieu semi ouvert n'empêche pas l'individu de profiter d'une opportunité. »
- ❖ p. 220 : rajouter le § suivant après celui du son 3.172 : « son 3.172a : séquence de *M. punicus* en recherche passive dans un boisement rivulaire clairsemé. Les signaux de durée moyenne (6 à 8 ms) au début et à la fin ont une double courbure sigmoïde avec la courbure convexe en fin de signal, la partie FM terminale étant très estompée mais descendant en dessous de 30 kHz : c'est bien de l'abs moy. Vers le milieu de la séquence, on constate une transition vers une série de signaux plus courts, linéaires et haut en fréquence, sans que le rythme ne s'accélère beaucoup ; ce comportement est

- très proche de ceux de *M. myotis* et *M. blythii*, et correspond au survol lent d'un buisson bas. »
- ❖ p. 225 : insérer l'encadré de deux pages intitulé « Les signaux FM sigmoïde de Pipistrellus kuhlii : à ne pas confondre avec des signaux FM abs moy de Myotis! » (fichier « Edition3\_Addendum1\_janvier2019\_P-kuhlii\_signaux-sigmoides »).
- ❖ p. 225 : insérer après le § « son DVD 3.173 » les § suivant : « son DVD 3.173a : séquence en sous-bois de M. myotis avec quelques signaux abs ht suivis aussitôt de signaux abs moy classiques dans un contexte de chasse en forêt ; la récurrence est ici moyenne (intervalles entre 70 et 90 ms) mais elle est souvent beaucoup plus lente. Ces phases à fréquence terminale > 30 kHz sont assez rares et toujours très courtes (4 à 5 signaux); leur agencement rappelle celui des signaux abs ht de *M. nattereri*, mais avec une FME plus haute chez ce dernier. son DVD 3.173b : séquence débutant par des signaux QFC-FM sur environ 38 kHz de FME, ces signaux prenant progressivement (et de façon irrégulière) de la largeur de bande par une augmentation de la fréquence initiale, leur donnant une structure FM sigmoïde; l'analyse auditive pourrait conclure à de la FM abrupte de *Myotis* en abs moy, mais les variations de structure et de largeur de bande parfois d'un signal à l'autre donne l'alerte; de plus, deux individus sont présents, et des trilles sociales sur 30 kHz environ sont produites par l'un d'eux. Il s'agit d'un comportement social ponctuel de P. kuhlii. Enregistrement : Julien Vittier. son DVD 3.173c : séquence où deux individus de P. kuhlii sont présents ; les signaux FM aplanie typiques du début se déforment peu à peu pour adopter la structure FM sigmoïde du comportement social décrit dans la séquence 3.173b; les trilles sont également présentes. Enregistrement : Loïc Bellion.».
- p. 226 : § 1 (la phrase commence en bas de p. 225); remplacer « Chez M. nattereri ce type est pratiqué en sous-bois clair lors d'une phase de croisière à récurrence faible ; il est rarissime d'avoir des séries de plus de 20 signaux de ce type : dans une séquence expansée de 30 secondes les signaux classiques et typiques claq bas apparaîtront au sein de la série abs bas ; en transit en prairie ouverte cette espèce utilise le claq bas. » par « Chez M. nattereri ce type est pratiqué en sous-bois clair ou en milieu ouvert (les prairies hautes sont des milieux de chasse prisés par cette espèce) lors d'une phase de croisière à récurrence faible ; il est rarissime en sous-bois d'avoir des séries de plus de 20 signaux de ce type : dans une séquence expansée de 30 secondes les signaux classiques et typiques claq bas à courbure convexe et grande largeur de bande sont généralement présents (son DVD3.174a: après une série claq bas typique, la récurrence diminue et les signaux sont en abs bas lorsque l'animal s'éloigne). En transit en prairie ouverte cette espèce utilise souvent le claq bas, mais elle peut également émettre de longues séries d'abs bas de plusieurs secondes sans la présence de signaux claq bas : la distinction avec M. myotis/oxygnathus est alors très difficile. On remarquera (son DVD3.174, début de séquence) que les signaux abs bas de M. nattereri ont presque toujours un très léger claquement final (l'amorce, souvent peu progressive, n'est cependant pas explosive : attention à ne pas confondre avec l'am & claq de M. brandtii, qui par ailleurs descend rarement sur de telles fréquences terminales); ce critère évite par ailleurs toute confusion avec des signaux abs bas de M. bechsteinii. »
- ❖ p. 226 : fin dernier §, rajouter après « ...; heureusement la FME, plus haute chez cette dernière espèce, est presque toujours discriminante. » (retour à la ligne) la phrase suivante : « Même si *M. daubentonii* et *M. dasycneme* ne sont pas répertoriés dans le type abs bas, il convient de garder à l'esprit que lorsque ces espèces chassent au ras de la surface de l'eau, il est assez fréquent que leurs séquences comportent quelques

- signaux dont la FT est inférieure à 23 kHz; c'est suffisamment inconstant pour ne pas les rajouter dans ce type, mais assez souvent observé pour le mentionner (voir fichier Excel « Identification\_Myotis... » en bas de la feuille abs bas). »
- ❖ p. 226: insérer entre les § « son DVD 3.174 » et « son DVD 3.175 » : « son DVD 3.174a: séquence de transition claq bas et abs bas chez M. nattereri; les signaux claq bas ont la forme entièrement convexe typique de l'espèce; les signaux abs bas correspondent au passage de l'individu en milieu ouvert; on constate un allongement de la durée et une courbure qui devient sigmoïde. Il subsiste parfois sur ce type de signal une très légère sensation de claquement final (ce n'est pas un vrai claquement: l'intensité se termine brutalement en fin de signal), sans doute en lien avec le comportement toujours associé d'un vol longeant une lisière horizontale: on retrouve ce même critère sur les signaux abs bas des grands Myotis lorsqu'ils sondent passivement le sol ou la végétation. La distinction est très difficile entre M. myotis/oxygnathus et M. nattereri pour ces signaux abs bas sigmoïdes (à claquement très faible), seule la présence de signaux claq bas associés peut trancher (critères de courbures et d'intensité); par contre ce léger claquement est toujours absent des signaux abs bas de M. bechsteinii. »
- ❖ p. 229 : rajouter le § suivant après celui du son 3.178 : « son 3.178a : séquence de transit ou de recherche passive de *M. blythii* en milieu ouvert (grande friche herbacée) ; l'ondulation caractéristique des signaux en abs de pics des grands *Myotis* (rarement présente aussi chez *M. bechsteinii*) et la durée longue (9 à 11 ms) tranchent avec la FT qui ne descend pas en dessous de 24,5 kHz : cette utilisation de l'abs moy avec de longues durées de signaux est caractéristique de *M. blythii*. »
- p. 229 : son DVD 3.182 ; 3<sup>e</sup> ligne : remplacer « séquence 178 » par « séquence 181 ».
- ❖ p. 229 : supprimer l'ensemble de la section « FME > 35 Caractéristiques acoustiques des espèces de *Myotis* » (elle est reportée, avec modifications, dans un nouveau chapitre, voir plus loin)
- ❖ p. 235 : § 2, ligne 3 ; insérer : « Le but n'est pas ici de dresser un catalogue de toutes les émissions à caractère social avéré ou supposé, enregistrées au cours de ce programme de recherche sur bon nombre d'espèces. Pour une revue plus complète sur les émissions à caractère social des chiroptères européens, se reporter à Middleton *et al.* (2014) et Pfalzer & Kush (2002). La liste des espèces et des cas traités se limite à ceux... ».
- ❖ p. 241 : rajouter le § suivant après celui du son 3.208 : « son 3.208a : autre séquence de chant de *N. leisleri*. Vers 1 min. 15 sec. un autre individu arrive en mode sonar (double fonction sonar-social?), avec des signaux très variables en LB et structure ; la plupart sont des FM sigmoïdes, mais on notre une QFC de 2,5 ms, ce qui est un record de brièveté pour cette espèce.
- ❖ p. 244: ajouter en bas de page une ligne entre celles de *N. leisleri* et *V. murinus*: « c) FME = 21 à 25 kHz, rythme 3 temps, sud Espagne ..... *E. isabellinus* »; puis remplacer les lettres c) et d) par d) et e) pour les deux lignes suivantes.
- p. 244 : dernière ligne ; corriger : « d) FME = 27 à 30 kHz, FT = 26,5 à 29 ms ..... E. nilssoni » par « d) FME = 27 à 30 kHz, FT = 26,5 à 29 kHz ..... E. nilssonii ».
- p. 247 : insérer une nouvelle tête de chapitre intitulé « Monographies ; Chapitre
   5 »
- p. 248 : insérer les pages suivantes dans le nouveau chapitre 5 :

Si le message essentiel maintes fois distillé dans cet ouvrage a été lu et intégré, vous ne pouvez que vous étonner de trouver ici une section détaillant des critères d'identification, et dont la clé d'entrée est l'espèce : c'est contraire au principe même de la méthode.

Mais à ce stade de lecture, vous êtes sensés avoir suivi l'ensemble du cheminement logique du très long chapitre IV, qui vous a imprégné de la nécessité de respecter méthodiquement toutes les étapes du processus polytomique, mêlant critères paramétriques et comportementaux. Et vous avez peut-être regretté de ne pas trouver les informations relatives à chaque espèce, regroupées sous forme de monographies. Une présentation résumant les comportements acoustiques typiques de chaque espèce peut donc aider à interpréter des séquences recueillies sur le terrain, en relativisant ou confortant une identification spécifique.

Ces monographies, classées selon l'ordre appliqué dans ce livre déclinant les espèces par types de structure de signaux sonar, dressent la synthèse des critères acoustiques et des caractères comportementaux qui ont été découverts dans le cadre de ce long programme d'études (les espèces non étudiées sur leurs terrains de chasse, comme *R. mehelyi*, ne sont pas abordées). Une attention particulière a été accordée aux espèces du genre *Myotis* qui est un des groupes les plus complexes à appréhender.

Les informations sur les habitats de chasse apportés dans ces monographies ne sont pas exhaustives en regard de l'abondante bibliographie existante; elles sont majoritairement extraites des travaux acoustiques que j'ai réalisés, dans de nombreux types d'habitats et régions, mais principalement en milieux forestiers du Massif Central et des Alpes. Ces études, pour la plupart publiées (Barataud, 1990, 1992, 1999, 2002b, 2011; Barataud & Giosa, 2010, 2021; Barataud *et al.*, 2013b, 2014a, 2016; Barataud J. *et al.*, 2020; Creţu *et al.*, 2022; Lefevre & Barataud, 2020; Vrignault & Barataud, 2021) totalisent plus de 1800 heures d'écoute, et près de 180 000 contacts pondérés de 34 espèces.

Les renvois à des écoutes de séquences permettent d'illustrer les comportements acoustiques les plus fréquents ou particulièrement diagnostiques ; <u>il est utile de les écouter tout en les visualisant sur BatSound</u>, et de consulter les paragraphes descriptifs associés à chaque fichier son, dans le livre ou dans le fichier PDF des commentaires de séquences sonores.

# **Structure FMa-FC-FMd (Rhinolophes)**

Les signaux utilisés par le genre Rhinolophus de façon exclusive en Europe, et permanente pour chaque individu, correspondent à une autre technologie sonar que les autres espèces. Le taux d'émission (duty-cycle) très élevé avec des signaux plus longs que les intervalles qui les séparent, la structure de type FMa-FC-FMd et le transfert de l'énergie du fondamental vers le premier harmonique, sont des particularités qui ont évoluées sans doute très tôt à l'Eocène (Jones & Teeling, 2006), utilisant une voie d'interprétation de l'information acoustique très différente de celle des Vespertilionidés. Contrairement à ces derniers qui privilégient la localisation spatiale (ce qui implique de moduler en fréquences lorsqu'une cible est détectée), les Rhinolophes sont des détecteurs de mouvement (voir p. 85). Le transfert de l'énergie vers l'harmonique 1 optimise la sensibilité à l'effet Doppler (le décalage de fréquences dû à une source sonore en mouvement augmente avec la vitesse de déplacement mais aussi avec la fréquence), et a aussi l'avantage secondaire, pour les espèces européennes, d'être discret visà-vis des proies tympanées qui sont pour la plupart sourdes au-dessus de 50-60 kHz : nos Rhinolophes sont ainsi devenus des prédateurs de lépidoptères. Une des conséquences de cette technologie Doppler est une grande stabilité de structure de signaux sonar quelles que soient les circonstances de vol : seule la durée de la partie FC varie de façon significative en lien avec la distance de la cible. La FME de la partie FC varie très peu (d'un signal à l'autre en fonction de la vitesse de vol de l'individu émetteur, pour que l'écho reste centré sur sa fenêtre très étroite de sensibilité auditive; au cours d'un même signal pour les mêmes raisons, mais cette fois en fonction du mouvement de la cible). Ainsi chaque individu, à la naissance, a sa fréquence d'émission propre, adaptée à sa « fovéa auditive »; on observe, au sein d'une même espèce, une gamme de fréquences individuelles plus ou moins étendue selon les espèces; une hypothèse personnelle est que cela pourrait être en rapport avec la stratégie sociale de chasse: les espèces chassant en groupe ventilant leur FME sur une gamme plus large (pour éviter un recouvrement entre individus, entraînant des interférences supposées?) que les espèces chassant plus en solitaire. Les gammes de fréquences utilisées par les espèces sont en rapport avec leurs tailles corporelles et obéissent donc à la loi de l'allométrie (Stoffberg *et al.*, 2011), avec pour *R. mehelyi* une exception qui relèverait de la sélection sexuelle (Puechmaille *et al.*, 2014).

# Rhinolophus ferrumequinum

Le Grand rhinolophe est, au sein de sa famille en Europe, celui qui émet sur les fréquences les plus basses, ceci en rapport avec sa taille. L'amplitude de la gamme fréquentielle est faible : la grande majorité des individus se situe entre 80 et 84 kHz, le maximum mesuré étant 84,9 kHz. La FME la plus basse, 76,6 kHz, provient d'une courte séquence enregistrée dans les Bouches-du-Rhône (grotte de la Daouste ; Jouques) en 2001 par Philippe Favre ; le signal mesuré, assez faible, est le dernier d'une série à intensité croissante, donc émis par un individu en vol en direction du microphone : un décalage Doppler jusqu'à + 2 kHz est possible, ce qui donnerait une FME à la source de 74,5 à 76,5 kHz.

Cette espèce a été contactée en chasse (qui semble plutôt solitaire : seuls quelques cas de plusieurs individus chassant dans une pâture, assez loin des uns des autres) dans des milieux divers, de la forêt à la lande buissonnante ouverte, en passant par des pâtures entourées de haies. Les boisements les plus fréquentés sont feuillus ou mixtes (2,2 % des contacts en futaie résineuse équienne), pas trop jeunes (> 50 ans pour 78 % des contacts), près du sol ou en canopée. Plusieurs contacts concernent des individus à l'affût sur des branchages, que ce soit en lisière de bois ou de haie, en verger ou en sous-bois dense. Lors des nuits avec lumière lunaire, il semble se cantonner dans les zones d'ombre, que ce soit pour la chasse ou le transit. En montagne il se rencontre surtout dans les vallées les plus chaudes, sur les versants sud ou près des rivières jusque vers 1500 m d'altitude.

# Rhinolophus euryale

Les FME mesurées pour cette espèce sont principalement groupées entre 100 et 104 kHz; avec un maximum rarement atteint de 106,4 kHz. Identifier acoustiquement de façon certaine cette espèce n'est possible qu'avec des valeurs inférieures ou égales à 102 kHz, car il est partout en sympatrie avec *R. hipposideros* dont les FME peuvent, chez quelques individus, descendre jusqu'à 102,5 kHz.

Le Rhinolophe euryale a été contacté en milieu forestier dense bien structuré mais les milieux arborés plus lâches et les lisières semblent aussi très attractifs.

Contrairement à *R. hipposideros*, *R. euryale* semble négativement sensible à toute perturbation lumineuse ou sonore incongrue sur son lieu de chasse : il s'éloigne systématiquement ; ainsi sa présence peut être sous-estimée lors de transects à pied, ou lors de points d'écoute lorsque l'observateur manque de discrétion.

# Rhinolophus hipposideros

Les extrêmes de FME mesurés pour cette espèce vont de 102,5 à 116 kHz. Les valeurs les plus basses ont été mesurées aux mois d'avril et mai, excluant l'hypothèse de fréquences plus basses produites par des juvéniles. Les valeurs > 114 kHz ont été mesurées sur des individus du sud de la France (Alpes-Maritimes) ou d'Espagne. Dans les zones géographiques où *R. euryale* est aussi présent ou susceptible de l'être, l'identification certaine du Petit rhinolophe est impossible dans la gamme de FME entre 102 et 106 kHz.

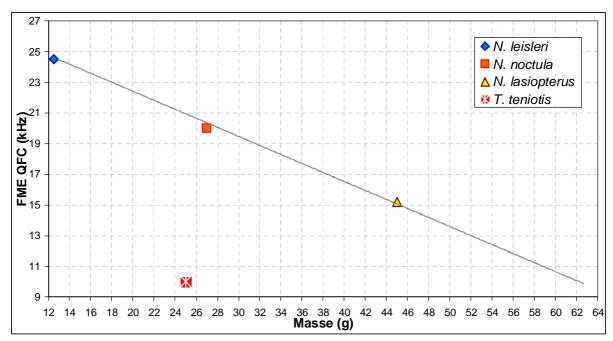
Le Petit rhinolophe semble plus forestier que les autres espèces ; sa petite taille le rend encore plus manoeuvrable, lui permettant d'être très actif en canopée dense (28 % des contacts ; n = 3755). Les futaies irrégulières feuillues (66,6 % des contacts) matures (76,3 %) ont nettement sa préférence sur nos secteurs d'étude, les plantations résineuses ne recueillant que 0,2 %. Une couverture arbustive assez dense (> 50 % de la surface projetée) semble attractive (59 % des contacts). Dans les Alpes du Sud (Mercantour), cette espèce a été contactée plusieurs fois en contexte de prairies, le plus souvent en lisière (haie ou arbre isolé), une seule fois en milieu très ouvert ; les altitudes s'étagent de 1100 à 1500 m, avec un record à 1820 m (Haut-Verdon, commune d'Allos).

La grande manoeuvrabilité de vol du Petit rhinolophe (ailes larges et poids faible) lui permet des prouesses comme faire du sur-place ou des remontées verticales. Sa stratégie de chasse, déduite des suivis visuels (marquage luminescent) ou acoustiques est souvent de type exploratoire dans un faible volume, où il circule aisément dans tous les sens au sein des frondaisons, aussi bien près du sol qu'en canopée; entre ses phases il louvoie rapidement d'un point à un autre sur quelques mètres à quelques dizaines de mètres; ainsi, selon que notre point d'écoute fait partie du volume exploré ou se trouve légèrement décalé, on pourra obtenir plus d'une minute de contacts quasi continus (son 3.2a), ou moins d'une seconde voire rien du tout: cette particularité des espèces acoustiquement discrètes et explorant de faibles volumes (c'est aussi le cas de *M. nattereri*, *M. emarginatus* et *P. auritus*), rend difficile l'interprétation des données acoustiques pour les préférences du micro habitat de chasse (Barataud & Giosa, 2021).

R. hipposideros fait partie de ces rares espèces (comme P. auritus, et dans une moindre mesure M. nattereri) qui semblent curieuses de tout évènement inhabituel sur leur terrain de chasse, à tel point que l'observateur, sur un point d'écoute, peut « attirer » un individu situé en dehors du rayon de perception de son détecteur (plus de 5 mètres) en allumant une lampe, froissant des feuilles sèches ou frottant ses vêtements... Cette particularité peut être exploitée positivement lors d'un simple inventaire qualitatif, mais constitue un biais important en cas de mesure de l'activité par comptabilité des contacts, car l'individu peut alors tourner plusieurs dizaines de secondes autour de la source de lumière et/ou de bruit!

# Structures QFC & FM aplanie ; FME < 30 kHz (du Molosse à la Sérotine de Nilsson)

L'identification des espèces comprises dans ce groupe acoustique, pour être efficace et robuste, passe par :


- la sélection des phases de croisière les plus lentes possibles ;
- la sélection des signaux QFC les plus bas possible en FME ;
- ➤ la mise en évidence ou non d'une véritable stratégie d'alternance de structures et de FME (Noctules);
- l'analyse du comportement de l'individu pour déceler des particularités de rythme (critères souvent plus faciles à apprécier en hétérodyne).

#### Tadarida teniotis

Le Molosse de Cestoni émet des signaux QFC (recherche passive, transit) ou des FM aplanies (approche d'obstacles) dans une gamme de fréquences qui est la plus basse parmi toutes les espèces européennes : les FME mesurées sur ses QFC vont de 9,3 à 14,7 kHz. Etant donné sa taille corporelle (aux environs de 25 g), il est intéressant de questionner la cohérence de fréquences aussi basses, en rapport avec la simple loi de l'allométrie. La **figure 182a** positionne quatre grandes espèces en fonction de deux variables habituellement corrélées négativement : plus le poids d'une espèce est important, plus sa fréquence de signaux sonar est faible. On remarque alors que *T. teniotis* n'est pas aligné avec la tendance allométrique formée par les Noctules : si cette règle était respectée, il émettrait des FME proches de 20-21 kHz (ou bien pèserait plus de 60 g!). L'échappement à cette règle dans de telles proportions, est la signature d'une pression de sélection qui a amené cette espèce à abaisser ces fréquences ; son régime alimentaire étant composé majoritairement de lépidoptères tympanés (Mata *et al.*, 2016), et la sensibilité auditive de la plupart de ces derniers se situant entre 20 et 50 kHz (Miller & Surlykke, 2001), l'hypothèse de sélection d'une stratégie de discrétion par décalage de la gamme fréquentielle (fréquences « allotoniques ») est très probable.

La confusion entre les émissions sonar de *T. teniotis* et *N. lasiopterus* est limitée à quelques circonstances de contraintes avec des obstacles suffisamment proches pour que seules des FM aplanies soient utilisées. Les émissions de croisière en QFC se différencient aisément grâce à, pour le Molosse, l'absence d'alternance et des valeurs de durée, FT et FME plus faibles.

T. teniotis est un chasseur de haut vol qui, après le crépuscule durant lequel la chasse est souvent active le long des falaises où il gîte, patrouille une strate horizontale à des hauteurs au-dessus du sol variables (souvent en limite d'audition à 200 m ou plus). Il chasse parfois audessus des villages éclairés (voir son 3.51); il peut aussi être contacté près du littoral rocheux méditerranéen, mais c'est plus en altitude, de la zone collinaire à la zone alpine jusqu'à plus de 2000 m a.s.l., que l'activité est souvent la plus forte. Les cols en montagne sont des points de rendez-vous souvent payants pour l'observateur; il est possible que des courants aériens remontants les vallées fassent converger des essaims d'insectes sur ces carrefours. Les séquences au détecteur sont répétitives, voire continues (selon l'amplitude des circuits de vol de chasse), souvent durant quelques minutes à quelques dizaines de minutes, puis disparaissent lorsque le secteur de chasse se déplace. Le rythme est lent et très régulier (son 3.49a); rares sont les phases d'approche complètes (souvent on entend juste une accélération sur quelques signaux, sans doute annonciatrice de la détection d'une cible) et encore plus rares sont les phases de capture : le Molosse approche très certainement ses proies par écoute passive, ce qui optimise sa discrétion acoustique pour les papillons dont la sensibilité auditive est inférieure à 20 kHz.



**Figure 182a :** ce graphique croise les valeurs moyennes de masse pondérale (axe des X) et de fréquence du maximum d'énergie (axe des Y) de quatre grandes espèces européennes. On constate que les trois espèces de Noctules obéissent à la loi de l'allométrie (elles sont correctement alignées le long de la tendance qui veut que plus le poids est élevé, plus la fréquence est basse), alors que le Molosse se situe bien en dessous des valeurs de FME attendues : ses fréquences ont évoluées en fonction d'une pression de sélection particulière.

# Nyctalus lasiopterus

La plus grande espèce d'Europe émet logiquement sur des fréquences basses ; ses QFC planes (< 2 kHz) s'étalent de 12,1 à 16 kHz mais sont majoritairement entre 14 et 15 kHz. L'alternance de signaux décalés en FME et en structure, caractéristique du genre *Nyctalus*, présente quelques particularités chez *N. lasiopterus* : une régularité d'alternance remarquable entre le type A (signaux les plus bas en FME) et le type B (signaux les plus hauts en FME) dans la phase de croisière de haut vol la plus pratiquée, et une réduction des différences de FME et de LB entre les deux types (voir § Signaux QFC ou FM aplanie alternés en fréquence p. 158-161). L'hypothèse d'une adaptation de ces signaux sonar à la capture des passereaux est développée dans le chapitre 7 p. 310.

Un autre comportement acoustique, plus rare, est une alternance plus irrégulière de QFC courtes pour cette espèce (15 à 20 ms) et de FM aplanies plus hautes en fréquence. Ce comportement reproduit le schéma classique des autres Noctules dans les mêmes circonstances : il n'a été noté que lorsqu'un groupe de quelques individus chasse au-dessus d'un village éclairé (voir **son 3.47**), mais on peut supposer qu'il se produise - dans des conditions plus naturelles - dans des zones aériennes à forte concentration de gros insectes évoluant en essaim (lépidoptères par exemple). Les QFC basses sont sur 13,2 kHz, ce qui est discriminant vis-à-vis de *N. noctula*.

Les contacts acoustiques avec la Grande noctule sont limités dans le temps et dans l'espace : entre avril et septembre-octobre, les sorties du gîte diurne sont souvent précoces en tout début de crépuscule, et les individus rejoignent alors rapidement un étang, lac ou rivière (distant de quelques kilomètres à quelques dizaines de kilomètres), au-dessus duquel ils chassent activement des insectes entre 20 et 100 m de hauteur, isolément ou en groupe de quelques individus ; 20 à 30 minutes plus tard, la dispersion est brutale et souvent plus rien ne sera entendu durant toute la nuit à cet endroit et même aux alentours. La raison est un changement

de strate de vol, qui passe rapidement de quelques dizaines à plusieurs centaines de mètres de hauteur (pour chasser d'autres types d'insectes ou des passereaux en vol migratoire, ou regagner un gîte). Ainsi, la mise en évidence de cette espèce sur un secteur est nettement optimisée par le ciblage de zones aquatiques en contexte forestier dès le début du crépuscule. Lorsque cette espèce rejoint son gîte en milieu forestier (ce peut être une heure après le crépuscule ou bien à l'aube, selon la rentabilité de la chasse, la saison, etc.), les individus peuvent pénétrer le sous-bois à travers la canopée ou depuis une entrée latérale en lisière, et voler sur plusieurs dizaines de mètres en sous-bois ; les signaux FM prennent alors parfois un timbre miaulé qui peut les faire confondre avec des signaux d'Oreillards ; mais la structure linéaire, la FT basse, l'intensité forte et le comportement grâce à la rythmique permettent tous ensemble d'éviter la confusion (son 3.48a).

#### Nyctalus noctula

Des trois Noctules européennes, *N. noctula* incarne l'archétype de l'alternance de signaux décalés en FME et en structure, plus ou moins régulièrement selon l'habitat de vol et le degré de curiosité de l'individu : plus l'environnement est richement structuré plus les FM aplanies sont utilisées (dans le but d'améliorer la qualité d'information en distance et directivité), et plus il est ouvert plus ce sont les QFC planes et basses qui s'imposent (pour améliorer la portée à longue distance). Les circonstances où l'alternance est la plus régulière correspondent à une chasse active : au crépuscule en lisière d'un étang boisé par exemple.

Cette pratique de l'alternance chez les Noctules est certainement liée à leur phylogénie, car le déterminisme fonctionnel (à moins que cela résulte d'une sélection neutre?) d'une telle particularité pose encore question. Une des hypothèses serait que pour une espèce au vol rapide en milieu ouvert, la grande portée de signaux QFC basses fréquences est supérieure à l'horizon de curiosité que l'individu se fixe : ainsi il émet à nouveau un signal alors que l'écho du précédent peut encore lui revenir en restant interprétable ; alterner des signaux différents permettrait d'éviter les confusions. Reste à expliquer pourquoi, si ce risque est suffisamment handicapant pour opérer une sélection naturelle positive chez des individus pratiquant une alternance, ce trait comportemental n'est pas également apparu chez d'autres genres en Europe (*Tadarida*, *Eptesicus*) soumis à la même contrainte supposée ? Quelques autres espèces, chez les Molossidés tropicaux notamment, font de l'alternance comparable à celle de nos Noctules, mais ce trait reste globalement marginal chez les espèces de haut vol et les questions concernant sa fonction et son origine ne semblent pas tranchées.

La différenciation acoustique entre *N. noctula* et *N. lasiopterus* ne pose guère de problème, cette dernière étant sur des FME plus basses en phase de croisière (**figure 91** p. **160**). Le recouvrement de valeurs FME x LB est faible avec *N. leisleri*, et c'est le comportement qui permet, une fois de plus, de conclure : lorsque *N. leisleri* descend près de 21 kHz elle est en recherche passive ou transit, alors qu'un individu de *N. noctula* en QFC sur 21-22 kHz sera en recherche active.

La Noctule commune affectionne, elle aussi, les abords des plans d'eau et rivières en contextes forestier et bocager. Les lumières artificielles, en milieu rural mais aussi citadin, l'attirent beaucoup à la nuit tombée. Ce sont dans ces deux circonstances que l'on rencontre des groupes d'individus en chasse, audibles en permanence sur un même point d'écoute (son 3.43a). Les autres habitats (lisières sèches, crêtes boisées) n'occasionnent que quelques courts contacts de recherche passive ou transit.

#### Nyctalus leisleri

La Noctule de Leisler se différencie acoustiquement grâce à plusieurs critères paramétriques et comportementaux, par rapport aux autres espèces à composante QFC de la gamme 20 à 30 kHz de FME. Toute QFC courte (< 10 ms) entre 23 et 28 kHz de FME peut lui être attribuée (son 3.41b). L'aspect « anarchique », imprédictible, de l'organisation de l'alternance des signaux de structure et de FME différentes est aussi une caractéristique utile à une identification très rapide, puisqu'elle s'appréhende encore mieux en hétérodyne sur le terrain. Le comportement d'apparition des signaux en « salves surprises » (son 3.41c) est également caractéristique (même si un cas a aussi été observé chez Eptesicus nilssonii en Finlande (Karri Kuitunen, comm. pers.): suite à un long silence, un ou quelques signaux QFC très intenses interviennent sans sommation, donnant souvent lieu à une approche puis à une phase de capture. Ce comportement est lié à la chasse aux lépidoptères, qui sont pour la plupart tympanés et peuvent réagir par la fuite à des signaux d'approche d'un chiroptère. N. leisleri utilise alors une contre stratégie découverte dès 1989 grâce au marquage luminescent de plusieurs individus en Haute-Vienne : les noctules s'élevaient à 100 mètres ou plus, puis effectuaient un piqué plus ou moins vertical à l'aplomb d'une zone où les lépidoptères en vol étaient nombreux (un village éclairé), à l'issue duquel elles émettaient brutalement quelques signaux, pour localiser une proie ou réajuster leur piqué en fonction des obstacles éventuels, puis terminaient leur approche pour tenter une capture (sans doute le bruit des ailes du papillon en vol contribue à sa localisation précise par écoute passive ?). Ainsi le piqué silencieux de la noctule permet une approche rapide et discrète de la zone de présence des proies, en profitant de l'effet de surprise dû à sa vitesse accumulée durant le piqué.

Lorsque qu'un individu de Noctule de Leisler est en vol de transit élevé, il peut arriver qu'il ne produise que des QFC planes sans alternance de structure et de FME; dans ces circonstances la durée des signaux est plus longue, ce qui entraîne un recouvrement total des valeurs et du comportement avec une sérotine bicolore dont le comportement est identique. Par ailleurs, comme pour toutes les espèces QFC entre 18 et 29 kHz de FME, lorsque *N. leisleri* n'utilise que des FM aplanies ou FM (transit en sous-bois, en allée forestière, près d'une lisière), elle intègre le complexe indémêlable qualifié de « Sérotules ».

La Noctule de Leisler chasse au crépuscule principalement au-dessus de vallées boisées, soit en fond de vallon soit le long des crêtes rocheuses abritées. En plaine elle est attirée par les étangs ou cours d'eau avec arbres, ou un contexte bocager. En montagne elle est fréquente en altitude jusqu'à 2300 m, montant peu au-dessus de la limite forestière. Par nuit tombée, elle est très souvent contactée en groupe au-dessus des villages éclairés.

Les populations de *N. leisleri* installées dans les îles Canaries ont fait l'objet de quelques enregistrements analysés selon la méthode d'écologie acoustique (Barataud J. *et al.*, 2020); l'alternance des types A et B paraît plus régulière sur Tenerife; les FME sont plus élevées (moy. du type A = 27 kHz contre 24,5 kHz en Europe) et les durées sont plus courtes (moy. du type A = 8 ms contre 12,1 ms en Europe; moy. du type B = 4,6 ms contre 9,1 ms en Europe). Le comportement de chasse en salves surprises a également été noté.

#### Nyctalus azoreum

La Noctule des Açores, endémique de cet archipel et considérée souvent comme une espèce à part entière, est issue d'individus de *N. leisleri* arrivés vers la fin du Pléistocène.

Des enregistrements de cette espèce, réalisés sur l'île orientale de São Miguel par Alex Lefèvre en août 2015, ont permis de collecter de nombreuses séquences contenant une large variabilité comportementale.

L'analyse de ces données sonores (Lefevre & Barataud, 2020) indique une FME plus élevée que chez *N. leisleri* (FME du type A = 30,3 kHz contre 24,5 kHz pour *N. leisleri* ; FME du type B

= 38,7 kHz contre 26,9 kHz pour *N. leisleri* ), en lien avec une taille corporelle plus faible. Il est noté également un usage plus fréquent des signaux de structure FM, pouvant indiquer une valence écologique plus forte avec des terrains de chasse pouvant être plus proches des lisières ou du sol. Le comportement de chasse en salves surprises est également utilisé. Des séquences sonores peuvent être téléchargées depuis l'article exposant les résultats de cette étude.

# Vespertilio murinus

La Sérotine bicolore était encore il y a quelques années considérée comme absente de la bordure occidentale de l'Europe, avec les populations reproductrices les plus à l'ouest situées entre le lac de Neuchâtel (Suisse) et la Franche-Comté (France). Depuis, la multiplication des suivis acoustiques a permis de montrer une répartition beaucoup moins figée mais restant mystérieuse : une présence assez régulière en France sur l'ensemble des montagnes orientales, des Vosges jusque dans le sud des Alpes, et dans le Massif Central. Mais des individus isolés, voire des groupes d'individus sont régulièrement enregistrés un peu partout, jusque dans les départements du littoral atlantique ou de la Manche. Ainsi cette espèce à tendance erratique (notamment en fin d'été semble t-il) est à intégrer comme possible dans tous nos inventaires où que ce soit...

Le sonar de *V. murinus* est caractérisé par de longs signaux QFC (13 à 25 ms) dans la gamme de FME de 21 à 27 kHz. L'identification certaine nécessite la concordance des éléments suivants : pas d'alternance de structures et de FME typique d'une Noctule ; une phase de croisière lente (le rythme est souvent régulier) dont les QFC seront supérieures à 17 ms de durée ; quelques signaux FM aplanie organisés clairement en phase d'approche cohérente (FME et récurrence croissante) : ainsi tout risque d'avoir affaire à *N. leisleri* en transit est écarté ; le **son 3.36b** est une illustration de ce genre de séquence.

V. murinus est une espèce de haut vol, qui chasse souvent à plusieurs dizaines de mètres de hauteur au-dessus des lacs ou étangs riches en végétation riveraine (phragmitaies, saulaies...); elle affectionne aussi les fonds de vallée, chassant le long des arbres bordant les cours d'eau assez larges. En montagne, elle est contactée à plus de 1000 m d'altitude dans le Massif Central et jusqu'à 2100 m dans le sud des Alpes (Mercantour), souvent haut à l'aplomb des pentes forestières matures, parfois plus près du sol au-dessus de prairies entourées de haies arborées.

#### Eptesicus isabellinus

Le matériel sonore récolté sur cette espèce du Maghreb présente aussi dans le sud de la péninsule ibérique, provient de deux provinces d'Espagne : l'Extremadure (Monfrague, Talavan, Rio Almonte) et l'Andalousie (Sierra de Cazorla, Sierra Morena). Aucune capture, ni donc aucun marquage n'ont été pratiqués. L'identification des individus enregistrés résulte de la concordance de plusieurs éléments : le témoignage de chiroptérologues locaux, affirmant que selon leurs travaux, seule cette Sérotine est présente dans les secteurs considérés ; les enregistrements tous effectués au crépuscule, permettant de constater la couleur pâle du corps et des ailes ; plusieurs critères notés sur les signaux et leur rythmique, nettement différents de ceux connus chez *E. serotinus*.

*E. isabellinus* est une espèce QFC type (contrairement à *E. serotinus*), qui en chasse active (seul comportement observé) inclut des QFC non planes (3 à 5 kHz de LB) dans des phases de croisière dominées par des FM aplanies (son 3.37b). Ces dernières présentent souvent une cassure anguleuse (typique des espèces QFC), voire une forme sigmoïde avec une courbe convexe initiale (son 3.37c). Le rythme est souvent assez régulier en phase de croisière active, avec de temps en temps des signaux groupés par deux, plus rarement par trois, mais pas assez

fréquemment pour retrouver le même caractère « jazzy » de la Sérotine commune. Les mesures des signaux FM aplanie sont en recouvrement complet avec celles d' *E. serotinus* : les critères de différenciation sont donc uniquement structurels et comportementaux.

Les huit sites d'observations étaient tous en bordure de rivière ou de plan d'eau, avec une végétation de type matorral rocheux à arbres clairsemés (pins, chênes verts et lièges, oliviers...). Le vol semble un peu plus rapide et agile que chez *E. serotinus*, avec des ailes un peu moins larges. Au crépuscule, les individus chassent isolément ou à quelques-uns, à une hauteur variable (entre 2 et 20 m au-dessus de l'eau, ou à plus de 100 mètres au-dessus d'une pente rocheuse), en suivant à distance un linéaire (rives, éperon rocheux...) parcouru en allerretour avec de brusques piqués lors des poursuites de proies. Un des individus observés chassant au-dessus de l'eau non loin de la rive (barrage de Tranco, Sierra de Cazorla) avec un vent assez fort, faisait parfois du sur-place contre le vent (comportement aussi observé chez *E. serotinus*) en s'abritant derrière un éperon rocheux dressé sur la rive.

# Eptesicus nilssonii

La Sérotine de Nilsson est, de toutes les espèces à composante QFC de taille moyenne à grande (poids > 10 g), la plus haute en FME. Espèce QFC type, elle pratique cette structure même en chasse active près des lampadaires. Ses QFC, entre 26 et 30 kHz de FME, ont une durée généralement de 15 à 18 ms, dépassant rarement 20 ms. Cet usage de la QFC la distingue formellement d'E. serotinus. La confusion avec N. leisleri est évitée grâce à l'alternance pratiquée par cette dernière; attention cependant aux « fausses alternances » d'une Sérotine qui alterne parfois sur de courtes séquences des signaux très légèrement décalés (trop peu pour être confondu avec une alternance de Noctule) en structure et FME, pour des raisons ponctuelles de localisation spatiale lorsqu'elle longe une lisière par exemple. La confusion avec V. murinus est évitée grâce à la prise en compte du comportement : cette dernière ne monte au-dessus de 26 kHz de FME que dans des circonstances de recherche très active non loin d'obstacles; en comparant des phases de croisière en recherche passive (intervalles de 200 à 400 ms), les QFC les plus basses pratiquées par ces espèces sont sans recouvrement fréquentiel. Un critère de rythme peut aussi être utilisé pour distinguer E. nilssonii en hétérodyne : le phrasé (basé sur la récurrence et sur de très légères différences d'intensité et de fréquence) sur trois temps, qui apparaît très souvent, plus ou moins noyé dans la rythmique générale (sons 2.2 et 2.40); une fois mémorisé il devient très utile et efficace.

Cantonnée en Europe aux régions nordiques ou montagnardes, la Sérotine de Nilsson est absente des zones atlantiques et méditerranéennes. Les habitats de chasse les plus fréquentés sont les zones humides (tourbières, lacs et torrents d'altitude) et la zone alpine entre la limite forestière supérieure et la limite supérieure des pelouses rocheuses. Lorsqu'elle fréquente les fonds de vallons c'est le plus souvent pour chasser en bordure de rivière ou au-dessus des lampadaires des villages où on peut lui donner rendez-vous par nuit tombée avec une grande fidélité. Son comportement de chasse en milieu naturel implique des parcours en aller-retour lorsqu'elle est en fond de vallon ou en bordure d'un lac (son 3.35a), ou bien de larges orbes moins routinières au-dessus des pelouses rocailleuses.

# Eptesicus serotinus

La Sérotine commune est la seule grande espèce à composante QFC, à être spécialiste de la FM aplanie : elle ne fait jamais, à ma connaissance, de QFC plane ; tout au plus, très rarement (seulement deux séquences collectées sur plusieurs milliers), peut-elle descendre un peu en dessous de 5 kHz de LB lors d'un vol de transit élevé. C'est ainsi que souvent, *E. serotinus* est

identifiée par défaut : l'absence de QFC plane dans des phases de croisière assez lentes (intervalles 300 ms ou plus) est rare chez les espèces QFC type.

C'est aussi la seule espèce de ce groupe à chasser couramment en sous-bois. Elle émet alors des FM aplanies tronquées, voire des FM dont la FME dépasse 30 kHz (jusqu'à plus de 40 kHz); d'autres espèces (Noctules, autres Sérotines) peuvent aussi produire de tels signaux, mais c'est la permanence de leur emploi et la caractérisation d'une activité de chasse qui pourront être discriminantes.

Enfin il y a le fameux rythme « jazzy », caractéristique de l'espèce (**son 3.36c**); il n'est pas exclusif de la Sérotine commune car ponctuellement, sur de courtes distances, la Noctule commune peut aussi l'employer lorsqu'elle longe un linéaire de lisière par exemple pour surprendre des proies près du feuillage; c'est donc bien l'usage permanent de cette rythmique qui est une caractéristique exclusive d'*E. serotinus*.

*E. serotinus* est une espèce au comportement de chasse plastique, et cela se retrouve dans la diversité de structures des habitats fréquentés.

Au crépuscule, elle chasse souvent entre 5 et 10 m de hauteur le long des lisières de boisements, de haies, d'arbres clairsemés en structure de parc ou même d'arbres isolés. Je l'ai aussi observée chassant à 2-3 m de hauteur au-dessus d'une pâture ou d'une prairie de fauche, capturant des tipules ou des coléoptères évoluant non loin du sol. Sur le littoral atlantique de l'île d'Oléron en juillet 1994, un individu chassait très haut au-dessus des marais salants ; toujours sur le littoral, il arrive que des individus chassent le long du rivage en longs va-et-vient. Enfin, sur les planèzes du Massif Central, au-dessus des vastes prairies de pâture où les piquets de clôture sont les seuls éléments verticaux sur des centaines d'hectares, les sérotines communes (bien présentes dans cette zone) se sont adaptées à chasser dans ces endroits souvent ventés, en pratiquant un vol stationnaire contre le vent, tentant d'intercepter les insectes dérivant dans le flux d'air.

Par nuit tombée, son attirance pour les lampadaires de rue, en ville comme en campagne, est bien connue ; elle évolue d'un vol assez lent juste au-dessus du halo lumineux en suivant des trajets linéaires en va-et-vient. C'est aussi par nuit tombée qu'elle rentre en forêt pour chasser ; en contexte forestier, le sous-bois représente 54 % de son activité, les trouées ou chemins sous-bois 27,8 % : ce n'est donc pas uniquement une espèce de lisière. La futaie irrégulière est la plus recherchée (70,3 % de l'activité) sans doute en partie grâce aux nombreuses trouées dans la canopée qui permettent une pénétration verticale ; la futaie feuillue ou mixte représente 91,8 % de l'activité, les plantations résineuses n'étant fréquentées que sur leurs lisières extérieures (l'effet coupe-vent y est sûrement recherché) ; les classes d'âge supérieures à 80 ans retiennent 79 % de l'activité.

Elle ne chasse guère au-dessus de 1500 m d'altitude en montagne, même si elle peut transiter d'une vallée à une autre par un col à 2500 m (col de Gialorgues, Mercantour, juillet 1993).

# Structures QFC & FM aplanie; FME > 30 kHz (du Vespère au Minioptère)

L'identification des espèces comprises dans ce groupe acoustique est optimisée par les éléments suivants :

- ➤ la sélection, si possible, des phases de croisière les plus lentes, que ce soit avec des signaux de structures QFC ou FM aplanie ;
- la prise en compte du comportement de l'individu, en croisant les critères de rythme (récurrence, régularité) et de structure (durée, FME, LB);

- ➤ pour les couples *P. kuhlii-nathusii* et *P. pipistrellus-pygmaeus* : la prise en compte des contextes spatio-temporels, populationnels et sociaux : abondance relative des espèces, éventuellement selon la saison, dans la zone géographique considérée ; individu volant en groupe ou isolé ;
- ➤ l'intégration des cris sociaux lorsqu'ils existent dans une séquence ;
- la mise en évidence de traits comportementaux spécifiques : forme sigmoïde des FM aplanies, récurrence\*, vitesse de vol\*, alternance d'intensité, présence d'une phase d'approche avant la capture, durée et récurrence de la phase de capture (les critères suivis d'un astérisque sont plus faciles à apprécier en hétérodyne).

#### Myotis dasycneme

Qu'une espèce de *Myotis* figure dans cette section est surprenant, tant ce genre est spécialisé dans les signaux FM abrupte. Le Murin des marais constitue en effet une exception en Europe : il pratique couramment des signaux incluant une partie QFC, souvent longue (15 à 25 ms), précédée et suivie d'une courte et étroite FM descendante. La FME, très influencée par la partie QFC plus riche en énergie, est le plus souvent entre 32 et 36 kHz. Ces signaux, outre leur originalité structurelle, sont organisés de façon inhabituelle pour un Murin : ils sont émis non pas en permanence, mais en séries courtes entre des phases de silence (durant lesquelles l'individu vole certainement de mémoire, sur des parcours linéaires et familiers). Nous retrouvons donc le principe des « salves surprises », décrit chez *N. leisleri* et *M. schreibersii*. Le but est là encore de surprendre des lépidoptères tympanés : les signaux intenses émis en courtes salves servent à la localisation (obstacles et proies) à distance, et l'approche d'une proie éventuellement détectée au sonar se fait ensuite par écoute passive de ses battements d'ailes (Van de Sijpe & Holsbeek, 2007).

# Hypsugo savii

Le Vespère de Savi est une espèce QFC type dont les FME en milieu ouvert, où les QFC sont dominantes, s'étagent entre 30 et 32 kHz en recherche passive ou transit (son identification est alors certaine), jusqu'à 34 kHz en recherche active. Le plus souvent (sauf en transit ou recherche passive au-dessus de la canopée), des FM aplanies se mêlent aux QFC, ceci d'autant plus que la lisière est proche.

Lorsque *H. savii* chasse en contexte de forêt clairsemée ou entre deux lisières, seules les FM aplanies sont présentes, et le recouvrement avec *P. kuhlii* est d'autant plus important que le Vespère peut lui aussi donner à ses signaux FM aplanies tronquées une double courbure, leur conférant une forme sigmoïde (**son 3.76a**). La solution réside toujours (sauf émission de cris sociaux par l'individu litigieux) dans l'attente d'une circonstance où l'individu ralentit son rythme en s'éloignant de la lisière : le Vespère descend alors sur des valeurs de LB < 5 kHz et de FME < 33 kHz, qui deviennent distinctives.

H. savii a des caractéristiques morphologiques et acoustiques qui lui permettent de chasser aussi bien en plein ciel (ce qu'elle fait fréquemment assez tôt au crépuscule, quitte à s'exposer à la prédation par un Faucon pèlerin, fait observé à deux reprises) qu'en trouée forestière. Ce sont donc les circonstances liées à la saison, au paysage, à la distribution des ressources alimentaires à un moment précis, qui l'amène à s'éloigner ou se rapprocher des lisières arborées. Cette espèce affectionne les abords des falaises exposées au sud, où l'abondance des insectes est certainement plus forte à certaines périodes. Elle chasse assez rarement près des éclairages artificiels.

Même s'il peut être contacté jusqu'à des altitudes basses dans le Massif Central (120 m dans le bassin de Brive en Corrèze), et descend jusqu'à 500 m dans les fonds de vallée des Alpes

internes, le Vespère est l'espèce la plus contactée au-dessus de 2000 m, et son niveau d'activité reste élevé jusqu'à 2200 m. Dans le Mercantour, une étude sur les chiroptères dans les peuplements de Mélèze d'Europe (Barataud *et al.*, 2013b) montre que le Vespère est deux à trois fois plus actif dans les mélézins sur lande (Rhododendron, Myrtille, Genévrier) que les mélézins sur herbe, et deux fois plus actif dans les mélézins âgés (300 à 700 ans) que dans les mélézins matures (100 à 150 ans).

## Pipistrellus kuhlii

Est-ce sa large répartition en contexte méditerranéen et méridional au sens large (avec le peuplement du Maghreb et des contextes insulaires de toutes tailles)? Est-ce une plasticité écologique et comportementale intrinsèque doublée d'une forte diversité génétique (au moins pour l'ADN mitochondrial, voir Andriollo *et al.* 2015)? La Pipistrelle de Kuhl pourrait bien être une des espèces de chiroptères les plus polymorphes et adaptables du paléarctique occidental...

Les signaux sonar de *P. kuhlii* sont un reflet de cette variabilité. Certes, ils s'insèrent dans une niche fréquentielle étroite : entre *H. savii* (présente surtout en contexte rupestre méridional quelle que soit l'altitude) et *P. pipistrellus* (présente presque partout, en densité variable mais souvent très forte), avec en plus la concurrence de *P. nathusii* (présente presque partout en densité variable selon le lieu et la saison) qui occupe exactement la même gamme de FME. C'est d'ailleurs peut-être un des facteurs qui expliquent ses variations de structures, sa large gamme possible de FME, et certains comportements atypiques.

C'est d'abord une espèce FM aplanie; avec la particularité d'insérer en fin de la partie QFC une courte FM descendante : plus la distance aux obstacles est faible plus cette portion FM terminale est présente, ce qui l'amène naturellement à des signaux FM de forme sigmoïde lors des phases d'approche. Ce dernier caractère n'est pas exclusif, puisqu'il est aussi noté – pour les signaux d'approche uniquement – chez H. savii, P. nathusii, P. pygmaeus et moins fréquemment chez P. pipistrellus). Mais il est frappant de constater que lorsque P. kuhlii se retrouve dans un écosystème insulaire où le cortège d'espèces spécialistes de la FM est réduit (comme sur l'île de Crête, voir Vrignault & Barataud, 2021) voire absent (comme aux Canaries, P. maderensis dérivant de populations de P. kuhlii, voir Barataud J. et al., 2020), les signaux FM sigmoïdes sont dominants y compris en phase de croisière, comme si ce caractère de FM terminale favorisait une tendance à produire de la FM. D'ailleurs, lorsque P. kuhlii est contactée en chasse active près d'une lisière, la sonorité hétérodyne est souvent similaire à celle d'une FM abrupte, et la confusion auditive est fréquente...

Ainsi, le plus souvent, dans les zones où *P. kuhlii* est bien présente, les séquences de <u>recherche active</u> en FM aplanie entre 36 et 40 kHz, <u>sans QFC</u>, permettent de conclure sur cette espèce avec un bon niveau de confiance, surtout après vérification de la présence de la FM terminale sur les signaux de croisière (FM-QFC-FM). Il est intéressant de constater en hétérodyne, que lorsque *P. kuhlii* et *P. pipistrellus* chassent ensemble le long d'une lisière à égale distance de cette dernière, la récurrence des signaux de la première est très souvent plus faible que pour la seconde : il est probable que *P. kuhlii* détecte à plus longue distance, ses FME inférieures et peut-être une intensité d'émission supérieure donnant plus de portée à ses signaux.

Mais la conclusion est plus complexe à affirmer dans les circonstances suivantes, lorsque les différentes espèces sont en sympatrie :

FM aplanies dont la partie QFC est tronquée (= très courte et souvent pentue) entre 33 et 37 kHz de FME : le recouvrement avec *H. savii* est total, et cette dernière ne peut

- être retenue que si l'individu passe à un rythme plus lent en utilisant des QFC < 34 kHz;
- ➤ séquence de recherche passive (pouvant inclure quand même des phases d'approche et de capture) mêlant FM aplanie et QFC entre 38 et 40 kHz (voir son 3.68b) : distinguer *P. kuhlii* de *P. nathusii* peut alors être hasardeux, car un comportement inhabituel (chasse avec QFC > 38 kHz) de la première est toujours possible (surtout lorsque plusieurs individus chassent ensemble ; c'est moins vrai pour un individu isolé) ;
- chasse active en sous-bois, avec des FM aplanies tronquées entre 42 et 43 kHz : s'agitil, comme la logique le veut, d'une *P. kuhlii* qui monte en FME à cause du milieu encombré (cette espèce est moins à l'aise en sous-bois que *P. pipistrellus*), ou bien d'une *P. pipistrellus*, qui est plus apte à chasser en sous-bois, et qui est éventuellement sous pression de congénères à proximité qui la contraignent à s'écarter de ses FME habituelles dans ce type de milieu ?

Dans tous les cas, la présence en direct sur le terrain permet de mieux appréhender le contexte, et une longue séquence offre souvent une chance de déceler un trait comportemental qui plaidera en faveur de l'une ou l'autre espèce. Et bien entendu, l'émission de trilles sociaux, bien que rare, s'avère discriminante au sein de ce groupe, même si là encore la variabilité peut être forte selon le contexte (son 3.72a).

La Pipistrelle de Kuhl est, plus encore que la Pipistrelle commune, une espèce de lisière. En forêt, elle chasse le plus souvent le long des lisières extérieures ou au-dessus de la canopée (Barataud *et al.*, 2021); ainsi elle ne peut pas être considérée comme une espèce intra forestière. Les structures arborées clairsemées (type parc) sont très fréquentées, de même que les lisières sur rivières ou plans d'eau (mais ce dernier habitat est attractif pour toutes les Pipistrelles!). C'est peut-être sa tendance thermophile qui l'amène à chasser autant en contexte urbain: c'est une habituée des lampadaires, chassant à hauteur de halo et même souvent en dessous, en défendant ardemment à grands coups de cris sociaux sa place vis-à-vis des congénères ou d'autres espèces de Pipistrelle (elle a souvent gain de cause contre une P. commune ou une P. pygmée).

# Pipistrellus nathusii

La Pipistrelle de Nathusius est la seule du genre à être une espèce QFC type : en phase de croisière en milieux ouverts ou semi ouverts, elle inclut toujours au moins quelques QFC parmi les FM aplanies, même en recherche active ; la proportion entre les deux structures dépend du degré de curiosité, donc de la densité d'obstacles et de l'abondance de proies. Ce critère peut suffire à la distinguer efficacement de la Pipistrelle de Kuhl lorsque le comportement de chasse est actif (rythme rapide, phases d'approche).

La gamme de FME couverte par *P. nathusii* est large (32 à 45 kHz en phases de croisière), donc en recouvrement avec *H. savii* et *P. pipistrellus* pour les extrêmes, et bien sûr avec *P. kuhlii* pour la quasi-totalité de sa gamme. Mais cette amplitude fréquentielle n'est valable que pour la partie allopatrique de son aire de distribution (**son 3.68a**): lorsque *P. nathusii* est en contact fréquent avec des populations de ces autres espèces bien installées localement (notamment *P. kuhlii*), on constate une réduction de la gamme de FME entre 38 et 42-43 kHz; ainsi des QFC entre 38,5 et 40 kHz ont une forte probabilité d'appartenir à *P. nathusii* (cette probabilité devient une certitude lorsque les QFC apparaissent dans une phase de recherche active). Ce réajustement de niche fréquentielle, sous pression de la compétition interspécifique, peut être permanent dans les régions et les habitats où *P. kuhlii* est très abondante; il peut s'avérer plus ponctuel, dépendant du contexte spatiotemporel, dans les zones où l'abondance des deux espèces est plus équilibrée; quant aux zones où *P. kuhlii* est

peu abondante (la zone pionnière de sa répartition nordique par exemple), on peut s'attendre à un recouvrement complet de leurs gammes de FME.

Du fait de leur usage en chasse active, les QFC de *P. nathusii* sont rarement très planes, ayant le plus souvent une largeur de bande supérieure à 1 kHz. Ses FM aplanies ont le plus souvent une courbure brutale voire anguleuse, située au début du signal (ne représentant que 1/7<sup>e</sup> à 1/6<sup>e</sup> de la durée totale), la majorité de la durée étant donc constituée d'une QFC plane ou légèrement pentue ; ce paramètre (voir spectrogrammes comparés dans l'onglet « courbures » du fichier Excel « Identification\_Hypsugo-Pipistrellus-Miniopterus ») peut être utilisé en soutien des autres critères pour la distinguer de *P. kuhlii*, les signaux FM aplanie de cette dernière ayant une courbure plus ouverte donc plus étalée (représentant 1/4<sup>e</sup> à 1/3<sup>e</sup> de la durée totale).

Sauf exception toujours possible, *P. nathusii* n'adjoint pas une courte FM terminale à la fin de la partie QFC de ses FM aplanies; mais ceci n'est valable que pour la phase de croisière à récurrence moyenne à lente : en phase d'approche, lorsque la partie QFC se raccourcit ou disparaît, les signaux peuvent adopter une structure sigmoïde (comme pour toutes les Pipistrelles et le Vespère d'ailleurs). Une séquence de recherche passive sans QFC, et dont plusieurs signaux FM aplanie présentent une FM terminale, élimine *P. nathusii* au profit de *P. kuhlii*. A l'opposé, une séquence de recherche passive avec quelques QFC (< 39 kHz), et dont aucun signal FM aplanie ne présente une FM terminale, ne relève pas forcément de *P. nathusii*; car *P. kuhlii*, en contexte d'économie d'énergie (milieu semi ouvert, peu de proies), adopte fréquemment ce comportement acoustique.

Les cris sociaux de *P. nathusii* sont très distinctifs : les trilles doublés voire triplés, séparés par un signal FM à LB étroite et timbre nasillard (parfois utilisé seul) sont souvent le meilleur moyen de déceler sa présence au milieu d'un groupe plurispécifique de Pipistrelles. C'est surtout d'août à octobre qu'ils sont émis, souvent en vol, ou posé lorsqu'un mâle chante depuis un arbre parfois pendant des heures.

Les habitats de chasse les plus fréquemment utilisés par *P. nathusii* sont les boisements riverains : une lisière arborée sur un étang ou une rivière sont des configurations idéales pour rechercher l'espèce. La distance de vol par rapport à la lisière est souvent de plusieurs mètres, voire plusieurs dizaines de mètres au-dessus des plans d'eau. En forêt, ce sont surtout les futaies régulières feuillues matures au sous-bois dégagé (type hêtraie par exemple), ou les allées forestières à ciel ouvert qui l'attirent. Dans un contexte de sous-bois lorsque la distance au feuillage est plus faible, on peut contacter de longues séquences sans aucune QFC. Les lumières artificielles attirent aussi cette espèce, même si cela semble moins fréquent dans les zones où *P. kuhlii* est abondante, sans doute pour des raisons de compétition.

# Pipistrellus pipistrellus

Les études acoustiques réalisées en Europe non méditerranéenne, quel que soit l'habitat et la saison, concluent presque toujours à une activité de chasse largement dominée par la Pipistrelle commune : en milieu forestier, elle représente à elle seule, selon les lieux d'étude, 50 à 95 % de l'activité pondérée toutes espèces confondues (Barataud *et al.*, 2016 ; Barataud & Giosa, 2021 ; Creţu *et al.*, 2022). Cette constatation, pouvant résulter d'une grande ubiquité et/ou d'une dominance démographique de l'espèce, est le signe d'une forte plasticité écologique mais aussi peut-être de perturbations (perte de naturalité des habitats et de diversité de l'entomofaune, généralisation des éclairages artificiels, etc.). Quelques relevés acoustiques réalisés en Roumanie en 2011 (Barataud, non publié), dans des zones rurales ou forestières à forte naturalité et sans éclairages nocturnes, ne montraient pas une dominance particulière de *P. pipistrellus* au sein d'un large cortège spécifique ; ce thème mériterait une

attention de recherche particulière. Mais même si elle a été récemment accentuée par des perturbations d'origine anthropique, l'abondance de *P. pipistrellus* a peut-être toujours été une réalité si l'on en juge par l'étendue de la gamme de FME de ses signaux sonar, et par l'absence de partage avec ses concurrentes entre 44 et 49 kHz (voir **figure 102** p. **176**): la forte présence de cette espèce a sans doute exercé une pression compétitive suffisante pour s'octroyer une telle niche fréquentielle.

La Pipistrelle commune est une espèce FM aplanie type, qui ne pratique la QFC qu'en mode d'économie d'énergie : recherche passive par faible densité de proies (son 3.65a) ou transit passif en milieu ouvert. On constate deux zones fréquentielles étroites plus couramment utilisées en recherche passive (indépendamment du sexe et de l'âge) : 44-45 kHz et 47-48 kHz. Mais un même individu peut se décaler fortement selon les circonstances, la chasse active en groupe ou le degré d'ouverture du milieu de vol occasionnant des extrêmes, entre 41 kHz (QFC ou FM aplanie à bande étroite) et 56 kHz (FM d'approche).

P. pipistrellus est certes une espèce de lisière, mais sa petite taille lui confère une bonne manoeuvrabilité dans des milieux encombrés, ce qui explique sans doute sa forte représentativité en forêt, y compris en sous-bois sans effet de lisière. Nos études dans le Massif Central (Barataud et al., 2016; Barataud & Giosa, 2021), la placent en tête de l'activité pondéré (52 à 56 %) parmi un cortège de 23 à 25 espèces. Elle recherche plutôt les forêts feuillues ou mixtes à structure irrégulière de plus de 60 ans, de préférence sous la canopée. L'activité en forêt se poursuit en automne et en hiver, où elle est une des rares espèces (avec P. nathusii, P. auritus, M. nattereri) à chasser même par des températures inférieures à 0°C (Creţu et al., 2022); entre fin septembre et fin mars, elle représente alors 72 à 94 % de l'activité pondérée toutes espèces confondues (n = 14). La présence d'eau stagnante ou courante est très attractive, en sous-bois ou en lisière; l'absence d'arbres est un facteur limitant.

L'exploitation des éclairages artificiels est bien connue, ce qui fait de *P. pipistrellus* une des rares espèces à pénétrer au cœur des grandes villes, pour peu que quelques arbres soient présents; mais son adaptabilité peut l'amener, comme le montre une observation personnelle au cœur de Paris, à chasser dans des rues sans arbres en longeant des alignements d'immeubles dont les balcons sont décorés de plantes vertes! Elle chasse au moins jusqu'à 2300 m d'altitude dans les Alpes, y compris au-dessus de la limite forestière sur des cols, mais c'est là encore près des arbres que son activité est notable et régulière.

#### Pipistrellus pygmaeus

Il est probable que la Pipistrelle pygmée est souvent passée inaperçue ces dernières décennies lors des inventaires acoustiques au détecteur actif : dans de nombreuses régions où le Minioptère de Schreibers n'est pas attendu, les observateurs avaient l'habitude de ne pas monter au-delà de 45 à 50 kHz en hétérodyne, restant donc en dessous des fréquences utilisées par cette espèce. Il est donc difficile d'avoir un recul suffisant pour savoir si les secteurs où elle est sporadiquement contactée à l'heure actuelle (comme le centre ouest de la France par exemple) correspondent à une colonisation en cours ou à des zones de faible densité depuis longtemps.

*P. pygmaeus* est une espèce FM aplanie, mais son usage de la QFC ne se limite pas uniquement aux comportements de transit et de recherche passive; il lui arrive de chasser activement en incluant quelques signaux QFC dans de longues séries de signaux FM aplanie. Les FME de ses signaux vont le plus souvent de 50 à 57 kHz; dans la zone de sympatrie avec de fortes populations de *P. pipistrellus*, *P. pygmaeus* semble contenue dans ces valeurs. Mais dans les secteurs méditerranéens où elle est abondante, elle transgresse souvent la limite basse

de cette gamme de FME: un groupe de pipistrelles pygmée chassant sans concurrence interspécifique étale couramment ses fréquences, certains individus descendant jusqu'à 48-49 kHz, voire plus bas encore dans certaines régions d'Espagne ou d'Italie où *P. pipistrellus* est moins fréquente voire absente (voir encadré sur les niches fréquentielles p. **170**).

Le risque de confusion entre *M. schreibersii* et *P. pygmaeus* dans la zone méridionale de la répartition de cette dernière, est très élevé; les critères distinctifs sont développés dans le paragraphe consacré au Minioptère.

Ses trilles sociaux se distinguent souvent assez bien de ceux de *P. pipistrellus*, par une FME supérieure à 20 kHz et le dernier élément plus aigu que les précédents.

*P. pygmaeus* chasse activement en lisière des plans d'eau et cours d'eau boisés, et à proximité des éclairages artificiels. En forêt elle semble préférer les doubles lisières formées par une allée à ciel ouvert, mais peut aussi ponctuellement chasser en sous-bois peu dense.

#### Pipistrellus maderensis

Grâce à une série d'enregistrements réalisés aux Canaries, j'ai eu l'occasion d'étudier le sonar de la Pipistrelle de Madère (Barataud J. *et al.*, 2020). Cette espèce est issue de populations de *P. kuhlii* du nord-ouest de l'Afrique, ayant anciennement colonisé cet archipel et subi des différenciations génétiques, morphologiques (taille plus petite) et acoustiques, en l'absence de flux de gènes avec le continent.

Les signaux sonar utilisés par *P. maderensis* présentent une plus grande variabilité que chez les autres espèces du genre. Les signaux QFC semblent assez rares, même en milieu ouvert où les FM aplanies sont dominantes. L'originalité principale chez cette espèce est l'usage de signaux FM de forme sigmoïde (avec une double courbure, concave puis convexe) en comportement de chasse active (contrairement à *P. kuhlii* qui réserve cette structure à un comportement de type sonar-social, au moins pour les populations continentales); encore plus étonnant : l'usage de la FM sigmoïde peut être conservé par un individu en recherche passive, avec des intervalles de 190 à 370 ms.

La gamme fréquentielle couverte par cette espèce, au moins sur l'île de Tenerife, est très large, sans doute en lien avec un faible cortège d'espèces de structure de signaux sonar similaires, donc une absence de compétition; il est possible aussi que ce soit l'absence de compétition avec des espèces FM qui ait développé l'usage de la FM sigmoïde, en lien avec une exploitation plus intensive du milieu forestier. Les quelques QFC récoltées se situaient aux alentours de 44 kHz de FME, ce qui est sans doute réducteur, puisque les FM aplanies s'étalent de 41,5 à 48 kHz. Quant aux FM sigmoïdes, elles couvrent une plage allant de 41,5 à 57,5 kHz, avec une largeur de bande allant de 20 à 75 kHz. Cette plasticité structurelle et fréquentielle témoigne d'une niche écologique certainement étendue, des milieux les plus ouverts aux laurisylves denses, et du littoral marin à 2100 m d'altitude.

# Miniopterus schreibersii

Il est tentant d'établir un lien, pourtant peu intuitif au premier abord, entre le Minioptère de Schreibers et la Sérotine commune : tous deux sont les seuls, au sein de leurs groupes acoustiques respectifs (espèces à composante QFC; FME < 30 kHz *versus* > 30 kHz), à ne pas pratiquer des signaux QFC planes. Lorsque, rarement dans une séquence de Minioptère, on rencontre des signaux dont la largeur de bande est inférieure à 5 kHz (sous réserve que la fréquence initiale ne soit pas sous-estimée, ce qui est souvent le cas avec les FM atténuées par la distance), cette dernière ne descend guère en dessous de 3 kHz. C'est donc une espèce FM aplanie type, ce qui paraît étonnant en regard de la forme de ses ailes (voir plus loin).

La gamme de fréquences la plus utilisée en phase de croisière va de 50 à 54 kHz. Il est donc en recouvrement total avec les FME de P. pygmaeus. Plusieurs critères fiables vont pouvoir être utilisés, certains étant plus évidents à apprécier en hétérodyne. M. schreibersii a souvent un vol très rapide; ceci implique que pour un observateur à l'écoute, les séquences apparaissent et disparaissent sans augmentation et diminution progressive de l'intensité des signaux : « c'est du brutal ». De plus, la récurrence en phase de croisière est très rapide, comparable à celle d'une petite espèce de Myotis en chasse active (son 2.35). Dans les phases de récurrences plus lentes (pouvant donc être confondues avec celles d'une Pipistrelle), il faut prêter attention à l'intensité relative des signaux les uns par rapport aux autres : chez M. schreibersii la disparité est telle que certains signaux très faibles peuvent laisser croire à un deuxième individu en arrière plan, alors que d'autres sont très forts : le tout donne une restitution « chaotique » qui ne doit rien au rythme, mais seulement à l'intensité (sons 2.36, 2.37, 2.38 et 3.59). Les tentatives de capture sont souvent privées de la phase d'approche ou de pré approche, et la phase finale de capture, souvent longue voire en plusieurs séries (témoignant d'une poursuite compliquée par la réaction de la proie), a une récurrence très élevée, supérieure à celle d'une Pipistrelle (sons 2.38 et 3.58). La forme des signaux FM aplanie, appréciée sur spectrogramme, présente une large courbure ouverte (mais attention! P. pygmaeus peut adopter la même sur certains signaux : ce critère n'est qu'indicatif que lorsqu'il est permanent) et souvent une longue durée : lorsque cette dernière est supérieure à 11 ms il s'agit du Minioptère (son 3.56). A l'écoute en expansion de temps, les signaux de M. schreibersii ont souvent une amorce progressive et une répartition de l'énergie assez uniforme tout au long de la bande de fréquences : l'ensemble restitue un son « lisse », une sensation de douceur qui tranche souvent avec les FM aplanies courtes et explosives des Pipistrelles (son 3.58).

Le Minioptère a longtemps été considéré comme une espèce de haut vol, sur la base de l'examen visuel de sa morphologie alaire; ses ailes longues et étroites sont en effet révélatrices d'un vol rapide et agile. Il a fallu attendre les suivis nocturnes de ses trajectoires et milieux de chasse qui, corrélés à la structure FM aplanie de ses signaux sonar, sont venus rectifier cette première approche : *M. schreibersii* est une espèce qui colle aux lisières. Son vol rapide lui permet bien sûr une grande capacité de dispersion autour du gîte diurne, et des déplacements sur plusieurs centaines de kilomètres pour des raisons encore méconnues (flux de gène, organisation en méta populations sur de vastes zones...). Mais lorsque le Minioptère sort de son gîte au crépuscule dans un contexte forestier, il choisit de circuler en sous-bois, en chemin forestier ou contre les lisières, au lieu de s'élever au-dessus de la canopée pour traverser en ligne droite un vallon par exemple (sans doute en partie sous pression d'une prédation possible par des rapaces comme les Faucons et l'Epervier).

Quant à son comportement en chasse, il est clairement centré sur la circulation plus ou moins rapide dans les sous-bois peu denses, et le long des lisières verticales et horizontales (juste audessus de la canopée), tout près du feuillage, traversant ce dernier à la faveur de faibles trouées pour passer des frondaisons au sous-bois. Mais alors, pourquoi ce vol si rapide, y compris dans ces circonstances? La solution est sans doute indiquée par son régime alimentaire composé en grande partie de lépidoptères nocturnes dont on sait que beaucoup sont tympanés. Pour surprendre ses proies potentiellement réactives, l'une des stratégies du Minioptère est de les surprendre par sa vitesse de vol, et de supprimer la phase des signaux d'approche (son 3.60a), moment critique de déclenchement de la réaction défensive de la proie (brusque crochet, accélération, chute en vrille, etc.). Une autre stratégie, dans des phases de vol moins rapide en clairière ou lisière, consiste à faire fortement varier l'amplitude des signaux au sein de la phase de croisière, pour gêner les proies dans leur interprétation d'un train de signaux cohérent provenant d'une source unique. Enfin, la stratégie des « salves

explosives », déjà décrite chez *N. leisleri*, est parfois aussi utilisée par le Minioptère (**son 3.60a**).

*M. schreibersii* peut aussi, ponctuellement ou localement, chasser hors contexte forestier; en Corse je l'ai contacté en prairies sommitales, suivant en aller et retour une rupture de pente juste en contrebas de la crête, sur le versant abrité du vent; il peut aussi chasser en contexte bocager, ou même le long d'une haie isolée, voire contre un unique arbre dans une grande prairie (Ana Rainho, comm. pers.). Son utilisation des éclairages artificiels est bien connue, et pratiquée aussi bien en France (où les zones éclairées sont très – trop! – nombreuses) qu'en Roumanie (où les villages éclairés sont plus rares).

# Structure FM à faible largeur de bande (Barbastelle & Oreillards)

A la différence des structures de signaux abordées par les groupes acoustiques qui précèdent, celles qui vont suivre n'incluent jamais une partie QFC, c'est-à-dire une largeur de bande inférieure à 5 kHz sur une durée d'au moins 1 ms.

Mais il ne faut jamais oublier que cette définition comprend aussi les signaux émis par des espèces à composante QFC lorsque, ponctuellement, elles se trouvent suffisamment proches d'obstacles pour ne plus produire que de la FM. Ce phénomène de convergence, lié au besoin de collecte d'informations plus précises dans un contexte de milieu de vol encombré (la FM améliore la qualité des informations liées à la distance, la directivité, la résolution angulaire, voir p. 80), est générateur de confusions dans l'identification notamment sur des séquences courtes. Ces confusions peuvent être évitées grâce à des critères structurels (présence ou non d'une courbure concave terminale, distance FME-FT) et comportementaux (types et variations de rythmes, présence de plusieurs individus, etc.). Les convergences les plus fréquentes vont concerner les groupes « sérotules » versus Oreillards, et Pipistrelles versus Murins.

La différenciation par le timbre des signaux longs des Oreillards (parfois peu miaulés, comme chez *P. austriacus*, qui peut alors être confondu avec *M. myotis-blythii* en abs bas à faible LB) et les signaux FM des Noctules, Sérotine commune ou Molosse (parfois miaulés!) peut être confortée grâce à un critère visuel, sur spectrogramme, de la FM terminale des Oreillards, qui prolonge leur signal comme une courte queue (parfois faiblement dessinée). Les signaux courts des Oreillards, par leur timbre nasillard caractéristique, leur courbure hyperbolique et leur faible largeur de bande, ne peuvent guère être confondus avec les FM sifflées linéaires ou sigmoïdes des Pipistrelles et des Murins.

Lorsque l'éventualité d'une espèce à composante QFC émettant ponctuellement en FM, est évacuée, les signaux de structure FM vont se répartir en plusieurs catégories, principalement en fonction du timbre (à l'écoute en expansion de temps : nasillard, miaulé, sifflé) et de la largeur de bande (± 40 kHz).

Dans cette section, nous allons aborder les signaux FM à faible largeur de bande (< 40 kHz), dont le timbre peut être soit nasillard (*Plecotus*, signaux < 4-5 ms de durée; *B. barbastellus*, signaux d'approche ou transit en sous-bois dense), soit miaulé (*Plecotus*, signaux > 4-5 ms de durée), soit sifflé (*B. barbastellus*, signaux alternés; parfois *P. austriacus* et *P. macrobullaris* en milieu ouvert).

Séparer les deux genres concernés est le plus souvent très simple :

les signaux de *B. barbastellus* en chasse sont inconfondables par l'alternance des deux FME distantes de presque 10 kHz et par leurs caractéristiques de durée et de LB;

- les signaux à timbre nasillard correspondent à: 1) B. barbastellus lorsque cette dernière est en approche (quelques signaux à rythme croissant, signaux alternés caractéristiques avant et après) ou transite en sous-bois (phase de croisière de plusieurs secondes); 2) signaux courts (< 4-5 ms) des Plecotus. Le critère auditif de l'amorce progressive (B. barbastellus) versus explosive (Plecotus), et le critère visuel de la courbure convexe (B. barbastellus) versus concave (Plecotus), sont alors nécessaires et suffisants pour différencier les deux genres;
- les signaux à timbre miaulé conduisent aux Oreillards en milieu ouvert ou semi ouvert ; il faut veiller à apprécier le comportement de l'individu grâce au rythme pour éviter les rares cas de confusion avec les Noctules, Sérotine commune ou Molosse lorsque ces derniers circulent en sous-bois dense ou très près du sol (sons 3.48a, 3.50a, 3.77a, 3.77b).

Séparer les espèces de *Plecotus* est plus complexe, notamment dans les tranches de durée médianes (entre 2 et 4 ms). A ce sujet, il est utile de rappeler pourquoi les graphiques présentant les mesures des signaux d'Oreillards, sont ventilés par tranches de durée. Chez ce genre, on observe une corrélation positive très forte entre la durée des signaux et le degré d'ouverture du milieu de vol. Cette méthode privilégiant la prise en compte du comportement de l'individu pour optimiser son identification spécifique, cette clé d'entrée de durée des signaux a le double avantage d'amener l'observateur à mesurer au préalable ce paramètre, et donc d'appréhender forcément le contexte de vol et le degré de curiosité de l'individu, puis de faciliter la lecture des distributions de valeurs entre les trois espèces, qui sont ainsi moins compactées horizontalement.

Mais cette présentation, où chaque feuille du fichier Excel consacré à ce genre représente une tranche de durée, ne doit pas oblitérer l'intérêt d'une analyse générale de la tendance que suivent les paramètres fréquentiels en fonction de la durée des signaux, pour chacune des espèces d'Oreillard. Cette vue globale est permise par le contenu de <u>la feuille « Tableaux & graphs durée »</u> et notamment les graphiques croisant la durée avec les paramètres fréquentiels; ces derniers permettent de juger des différences générales entre les espèces, et d'en déduire des hypothèses sur leurs différences écologiques. On constate par exemple que *P. auritus* affiche en moyenne des valeurs fréquentielles plus grandes que les deux autres espèces, ce qui peut s'expliquer par un habitat-type plus forestier. La pente descendante suivie par les valeurs de FME et de FT en fonction de la durée, est forte chez *P. auritus*, moyenne chez *P. macrobullaris* et faible chez *P. austriacus*; les chances de différenciation des espèces grâce aux graphiques croisant FI et FT seront donc plus importantes dans les tranches de durées les plus courtes et les plus longues: ce sont ces signaux que l'on mesurera préférentiellement dans une séquence.

Le graphique « durée x LB » pose un problème d'interprétation en termes de physique du sonar : en toute logique, plus un chiroptère évolue en milieu encombré, plus il agrandit sa largeur de bande (dont l'accroissement améliore la qualité d'information en distance de la cible, aux dépens de la portée). Chez les Oreillards, c'est le contraire qui se produit, ce qui amène à supposer qu'une autre pression de sélection a agit sur le sonar de ces espèces. L'hypothèse d'une spécialisation sur les proies tympanées (qui réagiraient moins en présence de signaux à bande étroite, comme en témoignent les signaux d'autres chiroptères spécialistes de ces proies, comme *T. teniotis* et *B. barbastellus*) en milieu forestier est une piste possible ; à ce titre, *P. austriacus* pourrait être le plus spécialisé des trois, avec des LB faibles en toutes circonstances.

#### Barbastella barbastellus

La Barbastelle est une spécialiste des FM à faible largeur de bande. Ses signaux d'approche d'obstacles (et non de proies) vont de 17 à 37 kHz de LB. Quant aux signaux de chasse (avec alternance de FME), ils sont le plus souvent entre 7 et 14 kHz de LB, y compris en sous-bois, ce qui révèle certainement une stratégie de discrétion vis-à-vis de ses proies (voir ci-dessous).

Sa caractéristique principale en activité de chasse (ou de transit en milieux semi ouverts à ouvert), est d'alterner <u>de façon régulière et dans tous les types d'habitats</u> deux types de signaux très particuliers : le type A, FM linéaire ou convexe très courte (3 ms) sur 32 à 35 kHz (jusqu'à 37 kHz) ; le type B, FM convexe d'environ 6 ms sur 40 à 46 kHz. Ceci en fait une espèce impossible à confondre à l'écoute en expansion de temps. Le type B, pour un observateur situé au sol, paraît moins intense que le type A (son 3.95) ; mais un microphone posé en hauteur donne la sensation inverse (son 3.95a) ; ceci est dû à la direction d'émission de chaque type : le type A, émis par la bouche, est naturellement dirigé en diagonale vers le bas, et le type B, émis par les narines, est naturellement dirigé en diagonale vers le haut, avec un angle entre les deux d'environ 90°.

La phase d'approche est souvent éliminée pour éviter un déclenchement précoce de la réaction de fuite de la proie (son 3.100), ce qui ne fonctionne pas toujours et donne alors lieu à une longue poursuite (son 3.101). Cet assemblage très sophistiqué a évolué en lien avec un régime alimentaire très spécialisé sur les papillons tympanés, et constitue l'une des stratégies les plus complexes connues à l'heure actuelle, qualifiée de mimétisme acoustique trompeur (voir chapitre 7, p. 304). Parfois, une bonne synchronisation entre les signaux FM aplanie d'une pipistrelle commune et d'une pipistrelle de Kuhl ou Nathusius peut leurrer l'observateur à l'écoute en expansion de temps, qui se trouve ainsi en situation d'apprécier – même si la transposition est osée ! le piège tendu à un papillon (son 3.99). Rarement, le type B n'est pas utilisé, sans doute dans des circonstances de transit passif en milieu ouvert.

La Barbastelle produit assez rarement des signaux d'approche d'obstacles durant les séquences de type alternance ; pourtant, un observateur munis d'un détecteur dans un chemin forestier enregistre souvent ce genre de séquences : la raison est que lui-même en est la cause. Car la Barbastelle circule le long de couloirs sans doute familiers donc bien mémorisés, où les obstacles imprévus sont peu fréquents ; mais sa hauteur de vol favorite est propice à la détection d'une silhouette humaine, entraînant des signaux d'approche. Ces derniers sont semblables aux signaux de transit en sous-bois dense, le rythme mis à part : croissant en approche et régulier en transit sous-bois). Le timbre de ces signaux d'approche et de transit sous-bois, à l'écoute en expansion de temps x 10, est nasillard ; mais leur amorce est progressive, ce qui les différencient des signaux courts du genre *Plecotus*.

Les cris sociaux produits par la Barbastelle semblent d'une variabilité étonnante, et l'inventaire est sans doute loin d'être exhaustif (son 3.101a).

La Barbastelle chasse partout où les papillons nocturnes sont abondants, mais pour autant elle ne fréquente pas les lampadaires, sans doute par crainte de la prédation. Les éclairages artificiels attirant les lépidoptères parfois d'assez loin, on peut donc supposer qu'ils constituent une menace pour cette espèce, par limitation de l'abondance de proies disponibles dans les habitats naturels.

Le contexte forestier de basse et moyenne altitude (< 1500 m), mixte ou feuillus, constitue le milieu de chasse préférentiel de *B. barbastellus*; la structure verticale peut être régulière ou irrégulière, mais les peuplements de plus de 80 ans sont nettement plus fréquentés. Le sousbois sans écotone, ou les chemins forestiers sous frondaisons recueillent l'activité la plus élevée. Lorsqu'elle chasse en canopée (29,6 % des contacts), elle n'évolue au-dessus de cette dernière que pour 21,6 % des contacts : au total, c'est 92,7 % de son activité en forêt qui s'exerce à l'intérieur du sous-bois.

Cependant, cette espèce au régime alimentaire très spécialisé peut s'accommoder parfois d'habitats de chasse très différents, parfois d'une faible naturalité. La Barbastelle peut chasser dans les plantations de résineux monospécifiques et équiennes, même si c'est très anecdotique. Elle chasse fréquemment en bocage bien structuré, plus rarement en bocage dégradé en suivant des haies arbustives pour peu que quelques vieux arbres subsistent çà et là. Quelques mentions de sa présence dans les plaines cultivées intensivement laissent perplexe : il pourrait s'agir de populations relictuelles s'accrochant à des lambeaux de bosquets et de linéaires boisés, populations dont la santé et les effectifs sont sans doute précaires.

#### Plecotus auritus

Les signaux les plus pratiqués par *P. auritus* sont de durées courte à moyenne (< 5 ms), avec un timbre nasillard et une amorce explosive typiques des Oreillards en général. Les signaux de *P. auritus* sont ceux qui présentent au sein du genre la plus grande amplitude fréquentielle ; la LB est plus grande que celles des deux autres espèces, ce qui s'explique surtout par une FI plus haute (sauf en transit en milieu ouvert, mais la FT compense alors en s'abaissant fortement). La FT suit une pente plus forte (partant de plus haut en milieu encombré et descendant plus bas en milieu ouvert) que celles affichées par les deux autres espèces : c'est donc dans les tranches de durées les plus courtes et les plus longues que *P. auritus* se différenciera le mieux grâce aux graphiques FI x FT.

Dans les secteurs géographiques où *P. macrobullaris* est absent, les durées les plus courtes (< 2 ms) sont toujours discriminantes entre *P. auritus* et *P. austriacus*. Dans les tranches de durées moyennes (2 à 5 ms), *P. auritus* se distingue par des valeurs de FI et de FME supérieures à 52 et 60 kHz respectivement. Les durées > 5 ms séparent assez bien les deux espèces. *P. macrobullaris* venant s'insérer entre les distributions des deux autres espèces, avec un recouvrement souvent important, sa présence rend souvent impossible une identification jusqu'au niveau spécifique.

P. auritus est un chasseur forestier ou de lisière. Les individus suivis après marquage (parfois plusieurs heures durant) n'ont jamais chassé en milieu ouvert; les espaces ouverts traversés étaient souvent de faible surface, avec des signaux à timbre miaulé de 5 à 7,5 ms. Lorsque cette espèce est contactée à plus de 50 mètres d'une lisière arborée, cela doit correspondre en majorité (voire exclusivement?) à une activité de transit, et c'est dans ces circonstances que les signaux, alors très intenses (audibles à 50 mètres minimum) peuvent atteindre jusqu'à 11 ms. L'Oreillard roux semble être exigeant quant à la qualité de ses habitats de chasse forestiers: il fréquente de façon très majoritaire les futaies irrégulières feuillues âgées de plus de 80 ans; il affectionne particulièrement le sous-bois dense riche en strate arbustive, et consacre 81 % de son activité dans les quelques mètres au-dessus du sol; lorsqu'il chasse dans le feuillage, il vole très lentement en louvoyant aussi bien latéralement que verticalement, avec parfois de courts sur-places.

#### Plecotus austriacus

L'identification de *P austriacus* passe par les mêmes remarques que celles faites dans le paragraphe consacré à *P. auritus* : l'absence de *P. macrobullaris* facilite la diagnose surtout dans les durées courtes et longues, et sa présence entraîne de nombreuses conclusions en « *Plecotus* sp. ».

*P. austriacus* montre une amplitude de valeurs de FME et de FT inférieure aux deux autres espèces, quelle que soit la durée : il en résulte, sur chaque graphique correspondant, une pente faible qui croise celle de *P. auritus* surtout dans les durées médianes. Le fait que les valeurs fréquentielles de *P. austriacus* soient plus basses que celles de *P. auritus* alors que les deux

espèces font approximativement la même taille, s'explique sans doute par des différences écologiques : *P. austriacus* fréquente en règle générale des milieux plus ouverts (même lorsqu'il est en forêt) que *P. auritus*.

P. austriacus passe une part majoritaire de son temps de chasse au-dessus des prairies, hautes de préférence, parfois après fauche ou en pâture, en parcours louvoyants à environ 1 mètre au-dessus de l'herbe. De longues séquences répétitives de signaux à timbre miaulé et de durée > 5 ms sont alors captées au détecteur, sans que jamais une phase d'approche et encore moins de capture se fasse entendre : il est hautement probable que les signaux sonar ne servent alors qu'à un ajustement spatial de la trajectoire de vol par rapport au sol et aux obstacles verticaux éventuels, peut-être aussi au repérage à distance des proies, et que l'approche de ces dernières se fait de façon silencieuse pour éviter une réaction de fuite ; ceci est en cohérence avec la proportion élevée de lépidoptères (dont beaucoup sont tympanés) dans son régime alimentaire.

Lorsque *P. austriacus* chasse en forêt, il préfère les peuplements feuillus (chênaie principalement) irréguliers de plus de 60 ans, souvent à proximité d'un point d'eau ou d'un ruisseau. Il exploite soit la strate juste en dessous des frondaisons si elle forme un espace de circulation assez libre (en futaie régulière par exemple), soit plus fréquemment la lisière audessus de la canopée; ces deux cas de figure représente 84 % de son activité en milieu forestier: il ne vole près du sol que dans 16 % des cas. Ce dernier point le distingue fortement de *P. auritus* qui, au contraire, évolue à 81 % près du sol. Ce décalage vertical des strates à l'intérieur desquelles l'activité de chasse s'exerce, est à l'heure actuelle la meilleure hypothèse de séparation de niches écologiques des deux espèces en milieu forestier.

#### Plecotus macrobullaris

L'Oreillard montagnard est présent, en Europe occidentale, dans les Alpes, les Pyrénées, le sud du Massif Central et la Corse. C'est dans ces zones que la distinction acoustique entre les trois espèces d'Oreillards est délicate, car les signaux de *P. macrobullaris* viennent en recouvrement central entre les distributions des deux autres espèces.

La tendance de *P. macrobullaris* est d'avoir en moyenne des FI légèrement plus hautes que *P. auritus* et plus basses que *P. austriacus*, et des FT plus basses que *P. austriacus* pour les signaux de durées courtes à moyennes ; mais le recouvrement reste élevé.

Si la banque de données est à peu près exhaustive, *P. austriacus* ne dépasserait pas une durée de 9 ms, et pour les signaux plus longs, les FI, FT et FME sont plus hautes chez *P. macrobullaris*, sans recouvrement entre ces deux espèces.

Lorsque l'on se trouve dans un habitat et surtout une altitude favorables (Alpes internes audessus de 1500 m par exemple), c'est surtout avec *P. auritus* que le risque de confusion existe. Dans l'état actuel des connaissances acquises dans le cadre de ce programme de recherches acoustiques, les circonstances permettant de qualifier une identification probable à certaine de *P. macrobullaris*, sont :

- durées de signaux entre 2 et 3 ms : FME fondamental < 32 kHz et FME harmonique 1 > 59 kHz ;
- durées de signaux entre 4 et 5 ms : FT < 18 kHz et FI < 50 kHz ; FME harmonique 1 < 44 kHz :</p>
- durées de signaux entre 5 et 6 ms : FT < 18 kHz et FI < 47 kHz ; FME harmonique 1 < 41 kHz ;</p>
- ➤ durées de signaux entre 6 et 11 ms : FT entre 13 et 15 kHz et FI entre 39 et 50 kHz ; FME fondamental entre 20 et 25 kHz et FME harmonique entre 37 et 47 kHz.

Un critère visuel est à confirmer : les signaux sonar longs en milieu ouvert débutent souvent par une courbure convexe (voir spectrogramme sur la feuille « > 6 ms » du fichier xls du genre *Plecotus*); cette caractéristique n'a pas encore été notée sur les signaux sonar de *P. austriacus* (mais parfois sur les cris sociaux de *P. austriacus*).

Les habitats de chasse sont souvent en milieu ouvert (friches des hauts plateaux, pelouses alpines); l'Oreillard montagnard a aussi été contacté en forêt : mélézin âgé sur lande dans le sud des Alpes (Mercantour) et hêtraie en bord de torrent dans les Pyrénées par exemple.

# Plecotus teneriffae

Cette espèce (ou sous-espèce selon les auteurs d'études génétiques) est rattachée à la lignée de *P. austriacus*, et aurait pour origine des individus en provenance du nord-ouest de l'Afrique continentale.

Les connaissances acoustiques sur cette espèce proviennent de l'île de Tenerife, avec une faible variabilité comportementale : recherche passive en milieu ouvert (Barataud J. *et al.*, 2020). Les signaux analysés sont donc de durée longue (6 à 10 ms) avec un timbre miaulé, et présentent de façon intéressante la même particularité que celle notée sur les signaux longs de *P. macrobullaris*, celle d'une courbure initiale convexe.

Les valeurs de FI et FT sont en recouvrement total avec celles de *P. austriacus* en Europe continentale ; on observe par contre des valeurs plus basses en moyenne pour les FME du fondamental et de l'harmonique 1 qui pourraient indiquer une spécialisation encore plus forte sur les milieux ouverts.

# **Structure FM abrupte (Murins)**

L'identification des espèces comprises dans ce groupe acoustique nécessite au préalable d'avoir caractérisé auditivement le timbre sifflé, et d'avoir écarté le cas de signaux FM produits par des espèces FM aplanies en contrainte avec des obstacles (distance FME-FT, courbure finale, faible LB, comportement, etc.).

Ce groupe est spécialisé sur les milieux encombrés : mis à part les longues FM-QFC-FM de *M. dasycneme* utilisées dans une phase comportementale de chasse très particulière, et quelques très rares séquences (trois à ce jour sur plusieurs milliers!) de *M. myotis-blythii* comportant un ou quelques signaux sigmoïdes avec une courte plage médiane en QFC plus ou moins pentue (le déterminisme de ces signaux est inconnu), la FM abrupte est la règle permanente. Il existe cependant une grande variabilité dans les largeurs de bandes balayées selon les espèces : *M. nattereri* et *M. emarginatus* sont coutumiers des LB très grandes (> 100 kHz), alors que *M. myotis-blythii-punicus*, *M. capaccinii*, *M. dasycneme* et dans une moindre mesure *M. daubentonii* ont des LB le plus souvent voire toujours < 70 kHz.

L'identification spécifique des Murins est conditionnée par les éléments suivants :

- la caractérisation des signaux d'une séquence dans un ou plusieurs types acoustiques (présence ou absence de pic d'énergie + gamme de fréquence terminale);
- ➤ la présence dans une même séquence d'une variation de rythme, avec une phase de croisière et une phase d'approche même courte ;
- ➤ la prise en compte du comportement de l'individu, en croisant les critères de rythme (récurrence, régularité) et de structure (durée, FME, LB);
- la mise en évidence de traits comportementaux spécifiques, notamment grâce aux transitions entre types acoustiques croisées avec la récurrence.

Il semble également important de prendre en compte le contexte géographique et son cortège d'espèces.

Les régions d'Europe où j'ai effectué mes enregistrements étaient le plus souvent riches en espèces du genre *Myotis* (souvent 8 espèces ou plus en sympatrie). Or, quelques séquences enregistrées (en aveugle) par des collègues dans le nord ou le sud de l'Europe où le cortège d'espèces de *Myotis* est plus limité, semblent montrer des différences de comportement acoustique (variations de FME et de FT principalement) pour quelques espèces. Il me semble prudent d'envisager que la cohabitation entre de nombreuses espèces syntopiques utilisant des structures de signaux sonar similaires, puisse constituer une contrainte qui les conduisent à utiliser une niche acoustique plus étroite (cette hypothèse de « concurrence de niches acoustiques » a déjà été formulée pour les Pipistrelles, voir encadré p. 170). Dans les régions où seulement 2 à 4 espèces de *Myotis* sont en sympatrie, une « compétition » plus faible pourrait faciliter une extension des comportements acoustiques, de sorte que l'on puisse rencontrer des signaux d'une espèce qui soient en chevauchement avec les valeurs d'une autre espèce absente.

C'est la raison pour laquelle, dans les contextes nordiques, méditerranéens ou insulaires où le nombre d'espèces est plus limité, je conseille d'appliquer mes critères d'identification en tenant compte de cette précaution. La solution peut être par exemple d'adapter la clé d'identification, en prenant comme base l'ensemble des critères les plus fiables pour chaque espèce, puis juger d'une possible variabilité locale en étudiant le comportement acoustique des individus grâce à de longues séquences en expansion de temps.

## Myotis alcathoe

Spécialiste de l'am ht, sa caractéristique est donc de pratiquer ce type dans toutes les circonstances de vol, et donc toutes les récurrences.

Ainsi, par récurrence faible, il va être en recouvrement avec *M. emarginatus* qui utilise l'am ht en recherche plus ou moins active (passant à l'abs ht dès que le rythme devient encore plus lent), et par récurrence forte il va être en recouvrement avec *M. mystacinus* en chasse active. La FT chez *M. alcathoe* est le plus souvent vers 40 kHz ou au-dessus, quelle que soit la récurrence : c'est dans cette gamme fréquentielle que les chances d'identification certaine sont les plus élevées.

Lorsque le rythme de croisière est peu rapide, seule une phase d'approche (même courte) qui reste en am ht peut éliminer formellement *M. emarginatus* (qui passe alors en claq ht). Lorsque le rythme est plus rapide, le recouvrement avec *M. mystacinus* est possible, car ce dernier peut pratiquer des FT aux alentours de 40 kHz lors de chasse active en sous-bois dense; il faudra alors espérer une phase plus lente pour séparer les deux espèces: *M. mystacinus* descend en dessous de 35 ou même 30 kHz en recherche passive.

Ainsi, pour résumer, une séquence présentant des fortes variations de récurrence et qui reste en am ht avec une FT supérieure ou égale à 40 kHz, pourra être accordée certainement à *M. alcathoe*.

Lorsque la FT descend en dessous de 40 kHz, la confusion entre *M. alcathoe* et *M. emarginatus* reste possible en l'absence de phase d'approche ; on remarque cependant sur les graphiques que les valeurs de FME sont plus élevées (> 65 kHz) chez *M. emarginatus* sur les signaux de plus de 4 ms de durée (correspondants à une recherche passive, donc avec des FT souvent < 40 kHz), ce qui peut être un recours efficace.

En dessous de 35 kHz de FT, le risque de confusion avec *M. mystacinus* est fort sauf si la phase de croisière est de récurrence moyenne à lente (> 80 ms d'intervalles) : dans ces circonstances, *M. mystacinus* est alors généralement près de 30 kHz de FT, ou même en am moy ou abs moy.

L'amorce chez *M. alcathoe* est parfois faiblement marquée, surtout sur les signaux de transit en milieu plus ouvert (voir **son 3.142**), jusqu'à parfois disparaître sur quelques signaux (voir **son 3.142a**), créant ainsi des courtes séquences en abs ht (attention alors à la confusion avec *M. emarginatus*: la FT au-dessus de 40 kHz reste la signature certaine de *M. alcathoe*).

M. alcathoe ne traverse que très rarement des espaces ouverts, pour rejoindre un gîte situé dans un arbre isolé par exemple. Il chasse parfois en lisière de haie, mais surtout en futaie irrégulière feuillue mature (> 100 ans) ; il affectionne particulièrement les ripisylves ou les forêts fraîches. Chasseur en poursuite, sa petite taille lui permet de circuler aisément dans un sous-bois dense. Il privilégie souvent le feuillage de la canopée en forêt sèche, mais une petite zone humide en sous-bois (ornière inondée, souille d'ongulé) l'amène à descendre chasser près du sol parfois durant plus d'une heure (Barataud & Giosa, 2021).

#### M. bechsteinii

Les signaux abs bas de *M. bechsteinii* sont utilisés lors des transits en milieu ouvert ; ils sont remarquables par la répartition assez uniforme de l'énergie tout au long de la gamme de fréquences, et leur durée souvent longue (couramment entre 10 et 13 ms), ce qui les distingue de ceux de *M. nattereri* dont la FME est similaire. Ces signaux abs bas peuvent aussi être distillés en courtes séries ou isolément au sein de séquences abs moy, ce qui est caractéristique de cette espèce.

Lorsque seuls les signaux abs moy sont présents dans une séquence (chasse active, récurrence moyenne à forte), les FME sont le plus souvent inférieures à 45 kHz ce qui limite le recouvrement à trois espèces :

- M. mystacinus, qui ne pratique l'abs moy qu'en transit ou en recherche passive en milieu ouvert (ce peut n'être qu'une petite clairière en sous-bois) avec une récurrence moyenne à faible sans phase d'approche;
- ➤ *M. myotis* en sous-bois, qui utilise alors presque toujours un rythme typique lent et irrégulier, rarement pratiqué par les Murins de petite taille (*M. nattereri* mis à part, mais ce dernier est rarement en abs moy); dans ces circonstances sa FME est souvent en dessous de 40 kHz et il inclut fréquemment des groupes de signaux hautes fréquences.

*M. bechsteinii* est donc le seul à chasser activement en abs moy quel que soit le rythme (phases d'approche d'obstacles ou de proies comprises) avec une FME quasi invariable entre 40 et 44 kHz, et ce parfois durant plusieurs minutes en un même endroit.

Les transitions claq ht ou moy / abs moy sont en recouvrement avec *M. brandtii* même si ce dernier ne les pratique que très rarement (et que sa FME en abs moy est le plus souvent > 45 kHz). Le **son 3.185** reproduit cette transition ; elle est suivie d'une série abs moy contenant un signal abs bas en son sein : là l'identification peut être qualifiée de certaine ; puis l'individu après une nouvelle traversée du feuillage (claq ht) passe en clairière avec une série abs bas.

Les signaux am ht restent anecdotiques chez *M. bechsteinii*, puisqu'ils ont uniquement été entendus près du gîte diurne lors d'évolution en groupe, sous forme de courtes transitions entre d'autres types acoustiques (abs moy et claq ht par exemple).

Même s'il lui arrive de chasser en système bocager bien structuré, l'essentiel de l'activité noctume du Murin de Bechstein se réalise en forêt. Il ne fréquente la forêt jeune et perturbée que lorsque le choix lui manque (Barataud *et al.*, 2009) ; car c'est avant tout un spécialiste de la futaie feuillue (chêne et hêtre) mature (> 80 ans), et riche en stratification verticale (couverture arbustive de 25 à 75 %). Les versants sud, trop secs, sont souvent délaissés au profit des fonds de vallon ou des versants nord et est. Bien que capable d'évoluer dans le feuillage de la canopée, 80 % de son activité (glanage, mais souvent aussi chasse en poursuite) est concentrée dans la strate des dix mètres au-dessus du sol.

### M. blythii

La distinction entre grandes et petites espèces du genre *Myotis* est assez aisée la plupart du temps (attention à *M. nattereri* qui alterne aussi des phases abs bas et signaux hautes fréquences...) notamment grâce aux FME basses et à l'aspect ondulé, visible sur spectrogramme, des signaux abs bas (parfois abs moy dans une moindre mesure). Mais une fois ce groupe identifié, la principale difficulté réside dans la séparation des deux grands *Myotis*, car ils utilisent les mêmes types acoustiques ; les possibilités de diagnose vont jouer sur les différences d'utilisations de ces types selon les contextes comportementaux.

En abs bas, *M. blythii* peut utiliser une FME et une LB < 30 kHz ce qui le différencie de *M. myotis* (voir son 3.178). L'abs bas est utilisé peu fréquemment, en comportement de recherche passive au-dessus de prairies ou de garrigues avec arbustes épars (l'am ht peut parfois être utilisée lorsqu'un individu se rapproche de la végétation érigée). En milieu forestier peu dense, lorsque les signaux abs bas sont pratiqués, ils alternent au gré de la densité des obstacles avec l'am ht (avec des signaux souvent longs en durée et d'une FME < 50 kHz), et/ou les claq moy et bas.

M. blythii utilise l'abs moy fréquemment, et notamment dans une circonstance qui le distingue fortement de M. myotis (qui est alors toujours en abs bas) : lors de transits linéaires et rapides en milieu ouvert, avec un rythme lent et plutôt régulier. L'abs moy est aussi pratiquée en phase de recherche passive en milieux ouverts, alors que dans ces circonstances M. myotis reste en abs bas. En sous-bois clair, M. blythii est le plus souvent en abs moy, mais c'est aussi le cas pour M. myotis. Cependant, dans toutes ces circonstances de vol, les signaux abs moy de M. blythii atteignent souvent une durée de signal de 8 ms, et la dépassant même jusqu'à 11 ms, avec souvent une FME < 35 kHz et une LB < 45 kHz (son 3.178a). Cette utilisation de l'abs moy en milieu ouvert avec des durées longues (8 à 11 ms) semble discriminante selon nos connaissances actuelles. M. myotis n'a jamais utilisé l'abs moy avec des durées aussi longues lors de nos nombreux relevés sur cette espèce (individus identifiés en main puis marqués, ou bien en aveugle dans des zones bien prospectées où M. blythii n'a jamais été observé en gîte ou en capture). La durée des signaux étant fortement corrélée avec la distance aux obstacles situés dans l'axe de vol, cette différence de type acoustique (basée sur une différence de FT) entre deux espèces proches utilisant un même habitat, me semble être une signature spécifique robuste sur un plan théorique : en milieu ouvert le critère principalement recherché est la portée, et pour ce faire les deux espèces n'utilisent pas la même stratégie (M. myotis abaisse sa FT et M. blythii allonge sa durée). La validation empirique de ce critère repose à l'heure actuelle sur de plusieurs centaines de données robustes concernant M. myotis.

Tout cas contradictoire s'avère intéressant à étudier... Dans un travail d'analyse de très nombreuses données issues d'une zone géographique très éloignée de la répartition connue de *M. blythii* (à l'ouest de Cologne, Allemagne; voir Creţu *et al.*, 2022), nous nous sommes heurtés à l'occurrence répétée de séquences en abs moy présentant tous les critères paramétriques et comportementaux exclusifs de *M. blythii*. Ce constat conduit à deux hypothèses également plausibles : 1) *M. blythii* est en dynamique pionnière vers le nord (grâce aux modifications actuelles du climat?), et des individus s'insèrent dans les colonies de *M. myotis* (fait constaté dans le nord-ouest du Massif Central de la France par exemple), passant inaperçu des chiroptérologues locaux persuadés que leurs colonies de *M. myotis* sont monospécifiques; 2) les populations de *M. myotis* n'ayant jamais été en contact avec *M. blythii*, donc non contraints par la compétition avec une niche acoustique proche, peuvent étendre leur niche acoustique (peut-être en lien avec une extension du comportement de

chasse et du régime alimentaire ?) qui devient, en situation allopatrique, en recouvrement avec celle de *M. blythii*. La réponse, dans tous les cas passionnante, ne pourra être apportée que par l'application d'un protocole adapté.

Ainsi *M. blythii* pointe des besoins de recherches à venir, notamment sur le plan de l'acoustique; car par ailleurs, plusieurs séquences enregistrées en aveugle dont l'appartenance au Petit murin est, par recoupement seulement, jugée possible à probable, laissent supposer une forte variabilité dans le comportement en chasse de cette espèce selon les contextes d'habitats:

- ❖ des séquences enregistrées (Olivier Vinet, comm. pers.) dans la vaste plaine herbeuse de la Crau (Camargue, France), qui contiennent des séries de signaux am ht, am & claq et abs ht (FM linéaire, sigmoïde ou ondulée; durée 3 à 5 ms; FT 30-40 kHz; FME 45-60 kHz; LB 50-70 kHz);
- ❖ des séquences enregistrées (Ludivine Delamare, comm. pers.) dans l'Hérault (sud France) en contexte de sous-bois dense, contiennent des séries de signaux am ht (FM linéaire ou concave ; durée 2,5 à 4,5 ms ; FT 30-40 kHz ; FME 50-70 kHz ; LB 50-80 kHz) avec un rythme lent et irrégulier typique des grands *Myotis*.

Les habitats de chasse fréquentés par le Petit murin correspondent en théorie à la présence de ses proies les plus consommées : les Ensifères. Contrairement à *M. myotis* qui est adapté à la capture des proies posées sur le sol, *M. blythii* est plus spécialisé sur les prairies hautes (Arlettaz, 1996; Roué & Barataud, 1999). Parmi les Grillons, seul le genre *Oecanthus* chante dans les hautes herbes ou les buissons, voire en canopée pour *O. dulcisonans* (Barataud J., à paraître); les Sauterelles sont par contre toutes liées aux feuillages quel que soit l'étage : herbacé, buissonnant, arbustif et arboré; ceci explique que *M. blythii* est contacté dans des habitats très divers : les grandes plaines steppiques comme celle de la Crau, les prairies de fauche du Massif Central et des Alpes du Sud jusqu'à 1800 m d'altitude (Barataud *et al.*, 2014), les garrigues semi boisées provençales, les dehesas d'Espagne, les ripisylves denses du Gard,, les chênaies pubescentes du Lot, etc. La technique de capture des proies est peu connue, le glanage des proies est fortement suspecté comme étant la stratégie dominante; la détection des Ensifères est largement facilitée par l'écoute passive des stridulations des mâles, qui doivent payer un tribut plus élevé que les femelles.

## Myotis brandtii

La caractéristique première de cette espèce est le type am & claq, puisque c'est <u>la seule à le pratiquer en phase de croisière de type recherche active</u>, sur <u>de longues séquences</u>; cette précaution de langage indique bien que l'am & claq n'est pas un type exclusif, une sorte de prouesse vocale que seul *M. brandtii* pourrait produire. En effet, on peut rencontrer ce type acoustique chez d'autres espèces : *M. myotis-blythii* et *M. nattereri* (lors de peu fréquentes et courtes séries de signaux à rythme lent, avec souvent une forte hétérogénéité de FME, FT, LB et de pics d'énergie d'un signal à l'autre); *P. pipistrellus* ou *H. savii* (lors de très rares comportements de phase d'approche à récurrence élevée, avant de boire par exemple); et la liste à découvrir n'est peut-être pas close... Mais tous ces autres cas ne concernent que de rares et fugaces comportements qui ne correspondent pas à de la croisière en recherche active : voilà la véritable signature exclusive de *M. brandtii*.

On veillera cependant à être prudent dans son jugement auditif, car sur des signaux courts et hauts en fréquence le positionnement correct des pics d'énergie réclame de l'entraînement (à partir de séquences de référence), de la concentration et quelques précautions (casque de bonne qualité, silence et attention...); certains signaux claq ht de *M. emarginatus* et *M. bechsteinii*, donnent parfois la sensation d'un double pic dans quelques phases de transition courtes (*M. emarginatus* notamment, qui passe sans arrêt de l'am ht au claq ht).

Mais *M. brandtii* est le seul à produire le double pic sur un même signal de façon nette et surtout sur des longues séries de signaux, où les durées et FT varient alors que l'am & claq reste constant (voir **sons 3.133 & 134**). Lorsque *M. brandtii* est présent sur un secteur, les séquences présentant ces caractéristiques sont parfois récoltées par dizaines en une soirée : leur emploi est très fréquent, sans doute plus que l'abs moy qui elle ne présente pas de critère diagnostique marquant en dehors de quelques signaux à FME > 60 kHz et LB > 85 kHz.

Une autre caractéristique de l'espèce est d'utiliser le claq moy sur de longues séries à récurrence faible (en lisière par ex., voir son 3.124).

C'est certainement l'espèce qui varie le plus les types acoustiques au sein d'une séquence, ce qui est d'ailleurs à rapprocher du fait qu'il détient le record du nombre de types pratiqués (sept sur les neuf décrits). Le son 3.186 est une très longue séquence enregistrée par Marc VAN DE SUPE dans une forêt de Belgique où plusieurs individus de cette espèce ont été suivis à partir de leur gîte de mise-bas et chassent à proximité de ce dernier; on remarque un détail typique: beaucoup des signaux que l'on serait tenté, par leur durée et leur FT, de qualifier d'abs moy, ont une légère amorce et un léger claquement, le type am & claq typique avec ses signaux courts et hauts en fréquence intervenant surtout en phase d'approche (notamment avant les phases de capture).

Le Murin de Brandt peut être contacté le long des lisières et en bocage bien structuré, mais il chasse principalement en forêt. La forêt feuillue ou mixte est préférée aux peuplements résineux non autochtones ; il semble indifférent à la structuration verticale mais il est beaucoup moins actif lorsque la strate arbustive est absente ; les boisements jeunes (50 ans) sont fréquentés pour peu qu'ils soient parcourus de couloirs de vol (chemins sous frondaisons) ; la proximité d'un étang ou d'un ruisseau sous-bois est recherchée. Lorsque ces conditions sont réunies, il n'est pas rare que les contacts avec cette espèce sur un même point se répètent pendant des heures, à intervalles de quelques minutes correspondant à l'amplitude de ses parcours en aller et retour sur un chemin.

# M. capaccinii

Les deux types acoustiques qui offrent le plus de possibilités d'identification fiable pour le Murin de Capaccini, sont l'am ht et l'abs ht, tous deux pouvant être mélangés au sein d'une même séquence (comme le montre le **son 3.187**), avec un comportement de transit ou de chasse ; le critère discriminant est alors la durée, plus longue que chez les autres espèces (même en chasse active avec une récurrence forte, la durée est souvent supérieure à 4 ms). L'allure sigmoïde des cris et la répartition régulière de l'énergie produisent la sensation sonore d'un sifflement « lisse » assez caractéristique.

Lorsque cette espèce chasse au-dessus de l'eau, elle peut le faire au ras de la surface comme *M. daubentonii* : les signaux abs moy des deux espèces sont alors très proches (bien que la LB soit plus faible et la FT plus élevée en moyenne pour *M. capaccinii*).

Mais fréquemment *M. capaccinii* pratique un vol en orbes larges dans un volume et non plus un plan : sa hauteur de vol varie entre la surface de l'eau et 1,5 m environ, et dans ce cas les signaux abs moy marquent des différences de LB et FT avec *M. daubentonii*, même si le recouvrement est important.

Les circonstances décrites ci-dessus de chasse au-dessus de l'eau représentent certainement la majorité du temps de chasse de *M. capaccinii*. Les eaux calmes semblent recherchées notamment pour la chasse au ras de leur surface ; c'est aussi le faciès le plus fréquent en plaine, là où cette espèce thermophile se retrouve le plus souvent. Mais *M. capaccinii* peut aussi chasser en sous-bois au-dessus d'un ruisseau à faciès torrentiel comme cela a été

constaté dans le sud des Alpes (Mercantour ; Roland Jamault et Arnaud Dorgère, comm. pers.). Aucun contact de chasse en forêt sèche n'a été relevé au cours du programme d'études.

#### Myotis dasycneme

Une majorité des sons de Murin des marais analysés dans cet ouvrage, proviennent d'enregistrements réalisés par Marc Van de Sijpe en Belgique; Marc a également produit des travaux d'étude comportementale sur cette espèce (Van de Sijpe & Holsbeek, 2007; Van de Sijpe, 2008), qui inspirent plusieurs détails présentés ici.

Cette espèce chasse principalement au-dessus de l'eau, avec deux grands types de comportements :

- 1) un vol linéaire ou en courbes, inscrit en permanence dans un plan horizontal au ras des surfaces aquatiques lisses, plus ou moins près des rives, à la manière de *M. daubentonii*; la technique de capture correspond alors, comme pour *M. daubentonii*, au « chalutage » de proies gaffées à la surface de l'eau avec les pieds et l'uropatagium; le type acoustique exclusivement utilisé est alors l'abs moy: les valeurs mesurées sont partiellement en recouvrement entre les deux espèces (*M. dasycneme* a souvent une durée plus longue et une LB plus faible), mais les critères de courbures mis en évidence par Marc Van de Sijpe sont discriminants (voir le document « Différences de courbures des signaux sonar entre le Murin de Daubenton et le Murin des marais », disponible sur la page « Documents PDF » du site http://ecologieacoustique.fr/);
- 2) 2) plus tard en saison lorsque les grands lépidoptères tympanés sont actifs, *M. dasycneme* pratique souvent un vol rapide et linéaire, le long de la médiane des canaux ou rivières larges (> 15-20 m), près de la surface; les lépidoptères sont attaqués par-dessous lors d'une brusque remontée, parfois poursuivis et finalement gaffés en surface s'ils se sont laissés choir; ce type de chasse particulier fait intervenir (selon les contextes, en mélange ou non avec des phases abs moy classiques) des séries de signaux FM-QFC-FM de longue durée (voir chapitre IV.C.4.b) distribués en « salves surprises » après un long silence (le parcours routinier et linéaire, bien mémorisé, permet des phases de vol sans émissions sonar); ce comportement très typique rend l'espèce aisément identifiable (voir son 3.188).

A l'écoute en hétérodyne sur 35-36 kHz, les séries de signaux de *M. dasycneme*, de structure FM-QFC-FM en salves surprises, se différencient parfaitement (grâce aux sonorités typiques dues à la partie QFC (Ti, To, Poé, Pli), des crépitements secs de FM abrupte produits par *M. daubentonii*, lorsque ce dernier chasse au même endroit. La confusion avec une Pipistrelle, qui produit les mêmes sonorités, pourra être évitée grâce aux critères de distribution temporelle et d'évolution de l'intensité des signaux.

A l'écoute en expansion, la durée longue et la largeur de bande faible de ces signaux contrastent fortement avec les FM abruptes typiques du genre *Myotis*, tout en se démarquant des signaux FM aplanie des espèces situées dans la même gamme de fréquences (*Hypsugo savii*, *Pipistrellus kuhlii/nathusii*), par une amorce progressive, une durée plus longue et LB plus étroite.

Si les canaux du nord de l'Europe, les grands plans d'eau et les rivières à cours lent représentent une image typique des milieux de chasse du Murin des marais (comportements 1 et 2), les rivières à cours plus rapide avec rochers, remous et rives boisées, accueillent aussi le second type de chasse comme j'ai pu l'observer en mai 2011, au-dessus d'une rivière près de Bălnaca en Transylvanie (Roumanie). *M. dasycneme* chassait (en syntopie avec

*M. daubentonii*) uniquement selon le mode FM-QFC-FM durant au moins une heure à raison d'un passage toutes les 2 à 5 minutes.

## Myotis daubentonii

Le comportement de chasse le plus utilisé par cette espèce est le vol rasant au-dessus des eaux calmes pour gaffer les proies à leur surface, comportement qui génère l'artefact de modulation d'amplitude sinusoïdale (MAS) sur les signaux. Dans les zones géographiques où l'espèce n'est pas en sympatrie avec *M. dasycneme* ou *M. capaccinii* (qui pratiquent le même comportement de chasse), toute séquence de croisière en abs moy, obtenue au bord d'un plan d'eau ou d'un cours d'eau, dont une majorité de signaux présente une MAS, correspondra à cette espèce qui est alors la seule à pratiquer ce vol rasant en permanence.

Dans la zone de sympatrie avec *M. capaccinii*, l'identification certaine est toujours complexe et souvent impossible tant le recouvrement de valeurs pour le type abs moy est important. Cependant, contrairement à *M. daubentonii*, *M. capaccinii* reste majoritairement au-dessus de 26 kHz de FT, ne transgressant jamais la limite des 23 kHz.

La différenciation entre *M. daubentonii* et *M. dasycneme* présente moins de difficulté grâce aux LB plus étroites du second, et grâce aux critères de différences de courbures mis en évidence par Marc Van de Sijpe (voir le document « Différences de courbures des signaux sonar entre le Murin de Daubenton et le Murin des marais », disponible sur la page « Documents PDF » du site http://ecologieacoustique.fr/).

Même si les autres habitats de vol sont plus anecdotiques en temps d'utilisation, *M. daubentonii* est susceptible d'être contacté dans d'autres circonstances : chasse active en lisière de haie, en allée forestière ou en sous-bois (parfois même en canopée), transit en prairie... Lors de la chasse en lisière ou sous-bois (où la MAS disparaît bien entendu), le type acoustique peut rester de l'abs moy, mais avec d'autres caractéristiques qu'au ras des surfaces aquatiques : signaux plus courts, plus hauts en FME (> 45 kHz) et en FT; le recouvrement avec *M. brandtii* est alors fort, ce dernier ne pouvant se révéler que par des largeurs de bandes souvent supérieures à 75 kHz, et de l'am & claq lors d'une phase d'approche. Les caractéristiques distinctives de *M. daubentonii* par rapport à *M. brandtii* et *M. mystacinus* (ce dernier ne pratiquant l'abs moy qu'en recherche passive uniquement) sont alors : une LB toujours < 70 kHz, une FT souvent proche de 30 kHz voire supérieure, et le maintien de l'abs moy lors d'une phase d'approche.

*M. daubentonii* n'utilise le claq moy que rarement, en phase finale d'approche d'un obstacle (et non d'une proie, où il reste en abs moy ou ht), ou dans le feuillage de la canopée.

L'am moy est parfois utilisée, uniquement sur quelques signaux en début de phase d'approche d'obstacle.

D'une façon générale, les transitions de type acoustique sont plutôt rares chez *M. daubentonii* par rapport à *M. brandtii*. Le **son 3.189** présente une longue séquence de Murin de Daubenton au-dessus d'un étang, avec plusieurs phases d'activité différenciées se traduisant ou non par des changement de types : abs moy avec une sonorité lisse (énergie répartie sur l'ensemble du signal) lors d'un passage en lisière ; abs moy avec énergie concentrée sur la 2<sup>e</sup> partie du signal et MAS en chasse au ras de l'eau ; claq moy en présence d'un congénère ; transit en abs moy.

Reste le type abs ht, qui permet son identification dans plusieurs cas. En transit en milieu ouvert il se distingue de *M. emarginatus* par la FT de certains signaux descendant en dessous de 30 kHz, et la FME souvent en dessous de 45 kHz; la forme est souvent plus sigmoïde chez *M. daubentonii*, avec une répartition de l'énergie plus uniforme restituant à l'oreille un son « lissé ». L'utilisation de l'abs ht en activité de chasse chez *M. daubentonii* est certainement

sous-estimée par les observateurs non initiés, qui ne s'attendent pas à le rencontrer dans des habitats forestiers. Dans des régions riches en ripisylves ou en étangs, où les populations de cette espèce peuvent être plus denses (Creţu et al., 2022), de nombreux individus peuvent chasser assidûment et fréquemment le long des lisières et allées forestières, et même en sous-bois (plutôt en futaie claire de feuillus matures, ou au-dessus d'un ruisseau torrentiel sans raser la surface). Le son 3.189a donne un bon exemple du comportement acoustique dans un tel contexte : les valeurs de FT descendent rarement en dessous de 30 kHz, frôlant parfois les 40 kHz en phase d'approche (qui reste en abs contrairement à *M. emarginatus*). Les signaux de *M. daubentonii* présentent alors des mesures très proches de celles de *M. emarginatus* en recherche passive ; ils s'en distinguent formellement par le comportement de chasse active (rythme rapide, phases d'approche qui restent en abs). Dans les mêmes circonstances, *M. capaccinii* produira presque toujours quelques signaux de durée > 6 ms. Mais des séquences répétitives ou de longues durées sont parfois nécessaires pour révéler et valider les différences entre ces espèces en abs ht.

#### Myotis emarginatus

Spécialiste (avec *M. alcathoe*) des hautes fréquences (FT toujours supérieure à 30 kHz), le Murin à oreilles échancrées passe une majorité de son temps d'émission à alterner des séries de signaux en am ht et d'autres en claq ht, même si souvent le moindre passage dans un petit espace plus ouvert provoque un passage à l'abs ht.

Plusieurs paramètres compliquent l'appréciation auditive des pics d'énergie sur de tels signaux et leur différence avec l'am & claq de *M. brandtii*: la durée courte, les hautes fréquences, le passage fréquent de l'am ht au claq ht au sein d'une même séquence (sans compter les cas où deux individus évoluent ensemble, l'un en am ht et l'autre en claq ht, voir son 3.191), tout se conjugue pour rendre l'appréciation difficile. Une attention auditive particulière est donc recommandée, avec écoute comparative de séquences de référence correctement identifiées. Les observateurs hésitant sur la classification du type acoustique (entre am & claq *versus* am ht alternant ou non avec claq ht) peuvent aussi se baser sur les valeurs de FT et de FME: *M. emarginatus* ne descend pas en dessous de 30 kHz de FT, et *M. brandtii* ne monte pas au-dessus de 60 kHz de FME (voir graphiques am & claq).

Le claq ht chez *M. emarginatus* est couramment pratiqué lors des phases à récurrence rapide où l'animal est en contact avec le feuillage, mais parfois de longues phases à rythme plus lent peuvent être utilisées en milieu forestier ou en lisière.

Il ne faut jamais oublier que le type de vol (donc de chasse) influence la rythmique des signaux sonar : une espèce comme *M. emarginatus* peut émettre des signaux logiquement réservés à une phase d'approche terminale (c'est le cas du claquement final d'une façon générale), avec un rythme lent et plutôt régulier, car c'est une espèce très manoeuvrable, glaneuse de proies posées, capable d'explorer la végétation ou le sol d'un vol suffisamment lent pour générer une récurrence moyenne à faible même dans un milieu dense en obstacles.

Ainsi, c'est le fait de pratiquer le claq ht en phase de croisière quel que soit le rythme (contrairement à *M. bechteinii* et *M. brandtii* qui ne le font qu'en phase finale d'approche) qui constitue un critère caractéristique de *M. emarginatus*.

On pensera cependant à éviter les pièges que nous tendent *M. myotis/blythii* et *M. nattereri*, qui pratiquent ponctuellement de courtes séries de signaux hautes fréquences où tous les pics sont permis, dont le claq ht! Lorsqu'il s'agit d'eux, on les reconnaît à une forte hétérogénéité des intervalles, des valeurs fréquentielles et de répartition de l'énergie (avec ou sans pics, variant parfois d'un signal à l'autre), et surtout à l'insertion de ces courtes séries dans des phases classiques de signaux abs moy, abs bas, ou claq bas; mais ceci réclame que la séquence soit suffisamment longue.

L'usage de l'abs ht chez *M. emarginatus* est généralement réservé au transit ou à la recherche passive de proies en milieu ouvert (pour cette espèce de feuillage dense, ce peut être un chemin forestier étroit, ou une trouée dans le feuillage); ce type est parfois pratiqué en recherche passive juste au-dessus de la végétation herbacée en paysage très ouvert (phragmitaies, bas marais, etc.), la reprise de l'am ht ou du claq ht ne s'effectuant que lorsque l'individu se rapproche de l'herbe ou d'un arbre. Les variables mesurées sur l'abs ht sont en recouvrement plus ou moins fort avec *M. daubentonii*, *M. nattereri* et *M. capaccinii*, mais l'usage unique et durable de l'abs ht chez *M. emarginatus* est réservé au transit passif en milieu très ouvert.

Les successions de types abs ht / am ht / claq ht, toujours discriminantes, sont par contre fréquentes en milieu forestier. Le **son 3.190** montre l'utilisation respective de l'am ht et du claq ht en fonction de la récurrence pour un individu chassant en sous-bois ; le **son 3.191** illustre la capacité exclusive qu'a cette espèce de pratiquer le claq ht sur une longue durée.

Essentiellement forestier, le Murin à oreilles échancrées glane à tous les étages, dans les forêts fraîches de petite montagne (bien que pouvant être contacté jusqu'à 2100 m dans le sud des Alpes (Mercantour) comme dans les chênaies blanches du piémont pyrénéen ou les chênaies vertes des îles méditerranéennes. Les sous-bois très denses et secs ne le rebutent pas, tant que ses proies favorites (les araignées) sont abondantes. C'est aussi ce qui l'amène parfois à « sortir du bois » et chasser dans les prairies sèches ou humides en glanant ses proies sur l'herbe haute.

#### M. escalerai

Cette espèce est celle qui, au sein du genre *Myotis*, est pour l'instant la moins bien étudiée en vol naturel; seulement 12 séquences (enregistrées par Marie-Odile Durand, Sébastien Puechmaille, Hervé Puis, Laurent Tillon) ont été analysées auditivement et informatiquement. Les comportements correspondaient à un vol libre juste après la sortie de gîte. Plus de 600 signaux ont été examinés; ils appartenaient tous au type claq bas, quel que soit le rythme, avec des variations de FT, LB, FME similaires à celles observées chez *M. nattereri*. Il ne semble donc pas possible à l'heure actuelle de séparer ces deux espèces lorsqu'elles pratiquent ce type acoustique. Le travail de recherche sur cette espèce doit continuer.

### Myotis myotis

Le Grand murin est le plus fréquemment contacté en abs bas (tous milieux) ou en abs moy (en sous-bois).

Lors de l'examen d'une séquence FM, sans pic d'énergie, sur des FME inférieures à 30 kHz, la première précaution d'entrée est de considérer les convergences entre les signaux abs bas des grandes espèces de Murins, et ceux de la Sérotine commune (ou des « sérotules « en général) volant près du feuillage : le croisement FT x FME, la courbure ondulée avec FM terminale chez *M. myotis*, et certaines différences dans les sensations auditives rendent la diagnose le plus souvent aisée.

Le risque de confusion entre les grandes (*M. myotis/blythii/punicus*) et les plus petites espèces du genre *Myotis*, mérite d'être détaillé :

1) <u>en abs bas</u>: pour distinguer les grands *Myotis* on utilisera: les critères de courbure ondulée presque toujours présente (rare chez *M. bechsteinii*, non notée chez les autres); les mesures de FME très souvent < 34 kHz (attention à *M. nattereri* dont la FME est très variable au sein d'une même séquence, mais ce dernier ne reste jamais longtemps sans revenir au claq bas, d'où l'importance de séquences longues ou

- répétitives); les durées > 8 ms (que seul *M. bechsteinii* dépasse chez les petites espèces);
- 2) <u>en abs moy</u>: hormis les durées > 8 ms (pour *M. blythii*) et les FME < 34 kHz, c'est le plus souvent le rythme lent et irrégulier qui est la signature des grands *Myotis* (attention cependant à *M. nattereri*, qui peut au sein de séquences abs bas à rythme lent, avoir des courtes séries de signaux dont la FT est supérieure à 23 kHz).

*M. myotis* et *M. blythii* utilisent tous deux l'abs moy en recherche passive d'obstacles en contexte forestier (pour chasser en repérant leurs proies par écoute passive, ou pour transiter), mais à notre connaissance, seul *M. blythii* dépasse 8 ms de durée.

En transit en milieu ouvert, M. myotis utilise toujours l'abs bas alors que M. blythii reste en abs moy.

En sous-bois, les transitions classiques de types acoustiques chez *M. myotis* se font entre l'abs bas et l'abs moy selon l'ouverture du milieu, entrecoupées de courtes séries à rythme lent et souvent irrégulier de signaux à FME plus élevée dont la répartition de l'énergie peut varier d'un signal à l'autre (abs, am, claq, am&claq). Ces derniers signaux correspondent à un comportement très particulier de contournement par le haut de buissons dans le sous-bois, d'un vol qui reste assez lent, de type exploratoire. *M. blythii*, *M. punicus* et *M. nattereri* peuvent aussi produire ces courtes séquences de signaux hautes fréquences à rythme lent, sans possibilité de séparer les trois espèces (sauf, pour *M. nattereri*, grâce à l'utilisation fréquente du claq bas caractéristique avant et après).

Les types claq moy et claq bas sont utilisés par *M. myotis* sur de courtes phases, généralement d'approche donc à récurrence rapide et croissante ; la confusion avec *M. nattereri* en claq bas est le plus souvent évitée grâce, pour ce dernier, à ses LB plus larges, ses FT plus basses et la courbure uniquement convexe. Le **son 3.192** illustre une séquence où des Grands murins, 50 mètres environ après l'émergence du gîte, sortent d'un sous-bois pour passer dans une allée forestière : les premiers signaux en sous-bois sont en claq moy, puis en claq bas lorsque les animaux crèvent l'écran de feuillage de la lisière ; les claquements continuent quelque peu, les deux individus étant très près l'un de l'autre à leur arrivée en lisière, et celui en arrière-plan traversant la piste pour rentrer à nouveau à couvert ; l'autre individu s'élève à quatre mètres de hauteur environ et longe l'allée entre les deux lisières, le type passe alors rapidement en abs bas ; puis il fait demi-tour en frôlant le feuillage (claq moy) et repasse en vol droit et élevé avec des signaux abs bas dépassant souvent les 8 ms.

Le **son 3.192a** reprend plusieurs caractéristiques des émissions de *M. myotis* en chasse en sous-bois. Les premiers signaux sont en abs moy avec une FME entre 40 et 44 kHz; le rythme particulièrement lent (intervalles 110 à 300 ms) rend *M. bechsteinii* (qui serait alors en abs bas) et *M. mystacinus* (qui même en milieu ouvert a des intervalles moyens inférieurs à 100 ms) très peu probables; la différence d'intensité entre signaux est également une caractéristique. Après 1,5 secondes les signaux augmentent brusquement en FME (30 kHz environ) un rythme d'abord lent puis croissant, la FT est aux alentours de 30 kHz. Entre 7 et 7,5 secondes un signal se distingue brutalement des autres par son intensité plus forte. Tous ces critères (récurrence faible en abs moy; variations de rythme, d'intensité, de FME) sont autant de signatures du comportement typique de l'espèce en sous-bois.

Même si ce comportement acoustique n'est pas encore décodé et semble rarissime, il est important de signaler que *M. myotis* peut produire des signaux de structure FMd-QFC-FMd, remarquables pour le genre *Myotis* puisque seulement connus jusque-là en Europe chez *M. dasycneme*. Ces signaux n'ont été enregistrés actuellement que sur 3 séquences parmi plusieurs milliers, à chaque fois en courtes séries de quelques signaux, en phase de pré approche en sous-bois.

*M. myotis* chasse surtout en milieu forestier, en explorant le sol à faible hauteur (ce qui l'amène fréquemment à contourner des buissons par le haut ou des arbustes latéralement). Aucune phase d'approche se terminant par une phase de capture n'est alors audible : le repérage des proies se fait par écoute passive, et les signaux sonar ne servent qu'à éviter les obstacles.

Ponctuellement (lors de printemps riches en chenilles défoliatrices par exemple), le Grand murin peut chasser dans les frondaisons. Les futaies feuillues matures à âgées sont préférées, que le sol soit entièrement libre ou parsemé de taches buissonnantes.

Lorsque *M. myotis* chasse en milieu ouvert, il recherche les prairies de fauche ou les pâtures où les orthoptères et les coléoptères circulant au sol sont accessibles. Mais il peut aussi chasser en poursuite, profitant des émergences ponctuelles de Hannetons ou de Tipules, en chassant entre 1 et 2 m au-dessus du sol en parcours sinueux de faible amplitude, et la détection des proies se réalise souvent au sonar, avec de fréquentes phases de captures.

*M. myotis* a été contacté jusqu'à 2100 m d'altitude dans le sud des Alpes (Mercantour) en mélézin ou sur des prairies de fauche.

## Myotis mystacinus

La caractéristique acoustique distinctive du Murin à moustaches est de mêler am ht et am moy au sein d'une même séquence, en fonction des variations de rythme (voir **son 3.147**). Cette transition, très fréquente, est discriminante à 100 %.

Lorsque *M. mystacinus* pratique uniquement l'am ht (en chasse active, en forêt...) les FT sont souvent dans la partie basse de la gamme : ainsi une séquence uniquement constituée de signaux am ht dont la FT reste entre 30 et 32 kHz pourra lui être attribuée (indice probable), surtout si la récurrence est moyenne à forte (intervalles < 70 ms).

Mais lorsque l'activité de chasse est en sous-bois dense ou dans le feuillage, de longues séries d'am ht à récurrence rapide, avec une FT proche de 40 kHz peuvent être produites, mettant *M. mystacinus* en recouvrement avec *M. alcathoe* et *M. emarginatus* : il faudra attendre une transition avec l'am moy pour pouvoir conclure.

L'amorce est plus ou moins explosive selon les signaux en fonction de leur durée (par opposition à *M. emarginatus* ou *M. brandtii* en am ht où elle est toujours très nette car sur des durées courtes), elle est parfois plus faible sur les signaux de croisière en milieu semi ouvert. La transition am ht - claq moy est en recouvrement avec *M. brandtii* lorsque ce dernier type correspond à la phase finale d'approche d'obstacles; par contre *M. mystacinus* n'utilise pas le claq moy à récurrences moyenne ou faible comme le fait *M. brandtii*.

L'abs moy n'est pratiquée qu'en transit dans des milieux ouverts devant l'axe de vol, donc avec un rythme n'indiquant aucune recherche active de proies ou d'obstacles ; ce peut être en permanence lors d'un transit en prairie, ou sur des phases courtes en sous-bois clair.

Le son 3.166a illustre le comportement d'un individu en vol dans une petite clairière, non loin de la lisière arborée; mis à part quelques phases d'am moy (entre 8000 et 10000 ms par ex) la plupart des signaux sont en abs moy (entre 5000 et 7000 ms par ex aucune amorce n'est audible; attention: la saturation de quelques signaux génère un craquement artefactuel à ne pas confondre avec un pic d'énergie). Sur de nombreux signaux on perçoit une légère amorce, si peu marquée que la frontière avec l'abs moy est ténue: on sent que l'animal « hésite » entre les deux; vers 12000 ms on entend une phase de capture: le comportement acoustique de recherche passive en milieu semi ouvert n'empêche pas l'individu de profiter d'une opportunité.

Le Murin à moustaches peut être qualifié de forestier riverain des cours d'eau, tant ce contexte est fréquemment noté dans ses séquences de chasse. Si, en plaine ou en milieu collinaire, il préfère les peuplements feuillus ou mixtes (aux dépens des plantations équiennes

de résineux), il est fréquent en montagne dans les sapinières, pessières ou mélézins jusqu'à 2200 m d'altitude.

Il chasse indifféremment en canopée ou près du sol en forêt sèche, mais la présence d'une zone humide ou d'un ruisseau l'amène plus souvent à chasser à moins de 5 mètres de hauteur; dans ce dernier cas, il semble moins exigeant sur l'âge du peuplement pourvu qu'il ait au moins 50 ans.

Il est aussi présent en zone bocagère ; l'absence d'arbres est un facteur limitant pour son activité de chasse, et il transite rarement en milieu très ouvert.

### Myotis nattereri

Sous cette dénomination, est regroupé dans cet ouvrage le complexe *M. nattereri-crypticus*; ces taxons ont été tous deux bien étudiés acoustiquement dans le cadre de ce programme (du nord de l'Allemagne à l'extrême sud de la France continentale, y compris sur des individus génotypés), et n'ont révélé aucune différence dans les comportements et habitats de chasse, les types acoustiques et leurs occurrences d'utilisation. Cette diagnose récente, d'origine uniquement génétique à l'heure de l'écriture de ces lignes, est intéressante du point de vue de l'historique des populations européennes pendant et après les périodes glaciaires du Pléistocène, mais ne me paraît pas pertinente dans le cadre de nos inventaires acoustiques en l'absence de critère décelable, et tant qu'aucune différenciation n'a été mise en évidence concernant leur écologie et leur organisation sociale (au contraire de *M. escalerai*). Pour cette raison, dans l'attente de la découverte d'éventuelles différences de traits de vie, je continue à utiliser la dénomination de *M. nattereri* pour désigner une entité unique sur le plan écologique.

Le Murin de Natterer pratique trois principaux types acoustiques, mais chacun est soumis à des variations importantes qui pourraient justifier de lui attribuer cinq autres types! Ce qui justifie cette simplification (hormis un encombrement inutile des graphiques) tient à la rareté et la fugacité d'utilisation des autres types.

*M. nattereri* doit avant tout être considéré comme une espèce hautement spécialisée sur un type acoustique : le claq bas. Les circonstances où il reste plus de cinq secondes sans émettre un signal claq bas sont rares quel que soit le milieu de vol, de la prairie ouverte au sous-bois dense. Or ses signaux claq bas sont très caractéristiques par leur courbure uniquement convexe, leur LB très élevée (jusqu'à 160 kHz) et leur FT très basse (jusqu'à 9 kHz). Le son 3.193 montre, chez un individu chassant en sous-bois, les variations de rythme et de fréquences au sein du type claq bas ; le claquement est si intense qu'il est le dernier élément entendu lorsque l'animal s'éloigne, et les phases de récurrence forte (30 signaux par seconde environ, cela peut aller jusqu'à 60 s/s) dans le feuillage sont remarquables.

En deuxième position d'occurrence d'utilisation, on trouve le type abs bas. Lorsque l'abs bas correspond à une activité de transit passif en milieu très ouvert, la forme des signaux est sigmoïde, la LB moyenne (60 à 80 kHz), et un très léger claquement est souvent audible ce qui permet de les différencier des signaux abs bas de *M. bechsteinii* dont les valeurs de FME sont recouvrantes. Mais l'abs bas est aussi utilisée souvent au cours de l'activité de chasse, en séries de durée moyenne à courte (de une à quelques secondes, toujours précédées et/ou suivies du claq bas), lors de la traversée en recherche passive de petits espaces plus ouverts (sous-bois clair, lisière, parcs...). La LB, la FME, la FT (parfois basculant très ponctuellement au-dessus de 23 kHz, donc en abs moy, voir son 3.193a) sont alors souvent très variables tout au long d'une même séquence, ce qui met *M. nattereri* en recouvrement tour à tour avec *M. bechsteinii* ou *M. myotis*: cette variation, d'abord source de confusion, est en fait une signature comportementale suffisamment typique pour permettre de conclure sur son auteur

avec un bon niveau de confiance, même si la transition avec le claq bas caractéristique reste le critère de fiabilité absolue (voir son 3.193b).

M. nattereri est aussi classé dans le type abs ht; or cette dénomination unique masque une plus grande complexité... De fait, l'abs ht est le type qui semble le plus pratiqué en sous-bois après le claq bas et l'abs bas, mais on observe parfois une grande variabilité dans la présence et/ou le placement des pics d'énergie : une série de 10 signaux peut cumuler plusieurs types acoustiques parmi l'abs ht, l'am ht, le claq ht, l'am & claq, sans que leur nombre, leur ordre de succession et leur rythmique semblent correspondre à une logique sonar classique de localisation spatiale (sinon une vitesse de vol lente avec évitement d'un obstacle proche). Ces signaux hautes fréquences sont distillés en courtes séries (le plus souvent moins de 5 signaux) à récurrence faible et souvent irrégulière, lorsqu'un individu chasse en forêt claire avec une strate buissonnante ou arbustive. Ce comportement n'est pas sans rappeler celui de M. myotis-blythii-punicus lors du contournement par le haut d'un buisson en sous-bois, et la similitude entre les deux taxons est suffisamment forte pour que cela pose de sérieux problèmes d'identification lorsque la séquence complète ne comporte pas de transition avec un autre type acoustique discriminant. Cette convergence entre les grands Myotis et M. nattereri n'est donc pas à négliger.

Pour conclure sur les types acoustiques de M. nattereri :

- ➤ <u>le claq bas est le plus utilisé</u>, avec des FT qui peuvent ponctuellement dériver dans la gamme du claq moy voire ht (voir **son 3.193c**);
- ▶ <u>l'abs bas vient en seconde position d'utilisation</u>, avec des FT qui peuvent ponctuellement dériver dans la gamme de l'abs moy ;
- ▶ l'abs ht, plus rarement utilisé et sur des phases de courtes durées, à rythme lent et irrégulier, doit être considéré comme un type de base soumis à variations : les mesures présentées dans les graphiques de l'abs ht peuvent également être appliquées aux types am ht, claq ht et am & claq, susceptibles d'apparaître isolément ou en courtes séries, en mélange avec ou à la place de l'abs ht.

Le **son 3.193d** est une longue compilation de plusieurs séquences consécutives enregistrées sur une même station d'écoute en sous-bois clair, montrant l'ensemble du répertoire de l'espèce et les fréquentes transitions de types acoustiques corrélées avec les variations de rythme, donc de comportement.

Il est difficile de définir quel type de milieu de chasse retient la plus forte activité, entre les prairies parfois vastes sans aucun arbre, et les forêts de tous types.

L'impression d'ensemble qui domine, est que *M. nattereri* est avant tout un glaneur de tout arthropode dans la gamme de taille lui convenant, quel que soit le substrat : sol nu, rocailles, litière de feuilles mortes, herbe rase ou haute, branchages et feuillages caduques ou persistants...

Ses signaux à très large bande et à claquement final très sonore, doivent constituer un avantage dans la mise en évidence du moindre relief et des différences de texture peut-être inégalé parmi la faune européenne, ce qui lui permet d'exploiter toute proie même inactive et plaquée discrètement sur son substrat. Ainsi la biomasse de proies disponibles et celle de proies accessibles présentent une très faible différence, ce qui est un avantage évident pour ce prédateur qui peut exploiter de faibles surfaces et des habitats sub-optimaux comme des forêts jeunes ou perturbées. Cette vision probablement juste de l'écologie de cette espèce omet sans doute d'autres facteurs limitants, car le Murin de Natterer n'est pas présent dans toutes les stations d'écoute, et se montre rarement abondant dans les mesures de l'activité acoustique.

Il est noté en majorité, d'après nos données en forêt, comme une espèce liée au sous-bois de peuplements principalement feuillus (en plaine ou contexte collinaire), richement structurées et âgées de plus de 80 ans. Son activité s'exerce à 80 % près du sol, même s'il est capable de

chasser d'un vol très lent dans les frondaisons à la façon d'un Oreillard roux. Cependant, lorsque des inventaires sont menés en centre de prairies permanentes, rases ou hautes, il est assez fréquemment contacté soit en transit (abs bas) soit en chasse (claq bas), parfois sur de longues séquences de plusieurs minutes. Il a été contacté jusqu'à 1850 m d'altitude en prairie et 2200 m en mélézin dans le sud des Alpes.

# Myotis punicus

Considéré comme sous-espèce en 1977 puis comme espèce à part entière grâce à des études génétiques, le Murin du Maghreb est morphologiquement et acoustiquement très proche du Petit murin. Il est présent – outre l'Afrique du Nord – en Corse et en Sardaigne, où il est la seule grande espèce de *Myotis* présente. Ainsi toute séquence typique du répertoire acoustique de *M. myotis* et *M. blythii*, recueillie dans cette zone géographique, sera rapportée à *M. punicus*.

Plusieurs types acoustiques utilisés par *M. punicus* ont été mis en évidence, mais la connaissance de leurs fréquences d'utilisation en fonction des comportements de chasse et de transit dans les différents habitats fréquentés est encore très lacunaire.

Comme *M. blythii*, il pratique parfois l'abs bas mais semble surtout spécialiste de l'abs moy, en chasse ou en transit. Ces signaux présentent fréquemment l'ondulation caractéristique des grands *Myotis* (son 3.172) en plus de la double courbure sigmoïde; cette dernière est asymétrique, avec la courbure convexe en fin de signal suivie de la FM terminale très courte et souvent estompée. Lors des phases de survol lent d'un buisson, il utilise des signaux à FME plus haute de type abs ht (son 3.172a). Aucun type avec amorce explosive ou claquement final n'a pour l'instant été mis en évidence.

Les habitats de chasse constatés sont plutôt à basse altitude, des friches herbacées ou prairies de pâture à des cordons boisés dégradés bordant des ruisseaux, qu'il parcoure d'un vol bas et assez lent.

- p. 256: § 2, fin de la ligne 6; remplacer « inter individuelle » par « intra individuelle ».
- ❖ p. 259 : § 2, ligne 6 ; remplacer « Lors d'une étude de radio pistage, l'évaluation ne porte donc que sur un nombre limité d'espèces (souvent une seule) et sur quelques individus, entraînant une redondance forte dans les résultats ; » par « Lors d'une étude de radio pistage, l'évaluation ne porte donc que sur un nombre limité d'espèces (souvent une seule) et sur quelques individus, réduisant les possibilités d'extrapolation des résultats ; ».
- ❖ p. 260 : § Biais d'inconstance spatiotemporelle ; lignes X et X ; remplacer « Ce biais peut être corrigé par des tests de répétition sur une même station, et par le nombre de stations inventoriées... » par « Ce biais peut être évalué par des tests de répétition sur une même station, et corrigé par le nombre de stations inventoriées... ».
- ❖ p. 260 : insérer après le § Biais d'inconstance spatiotemporelle, un nouveau § :

#### Sites et stations d'écoute

L'étendue spatiale des relevés acoustiques recouvre trois unités hiérarchisées : la zone d'étude, le site et la station. Tous trois sont soumis à des variations, mais sous des influences différentes.

La zone d'étude peut être d'étendue très variable (une région, une réserve naturelle, une vallée, une forêt, etc.), principalement en lien avec les objectifs des relevés acoustiques

(étude comparative d'un ou plusieurs habitats, étude ciblant une ou plusieurs espèces, inventaire ponctuel, etc.).

Le site est un ensemble paysager homogène en regard de la typologie d'habitats retenue ; il comprend plusieurs stations. Son étendue spatiale comme sa composition sont susceptibles de fortes variations, principalement en lien avec deux paramètres : les degrés de finesse de la typologie d'habitats et de la fragmentation de ces habitats dans la zone d'étude. Dans un étude sur les forêts visant à mettre en évidence des différences de composition et de structure par exemple, un site sera un lieu où l'habitat ciblé est homogène (futaie feuillue irrégulière, ou taillis sous futaie, ou futaie résineuse régulière, etc.). Le site est le premier stade qui définit la variabilité de l'échantillonnage.

La station est un sous-ensemble du site; elle correspond à un point d'écoute géoréférencé. Ce point peut être choisi de manière aléatoire, ou en lien avec des microstructures recherchées au sein de l'habitat (clairière, trouée, sous-bois dense, etc.); il représente donc un deuxième niveau d'importance de l'échantillonnage. Il est une circonstance où station et point d'écoute seront différenciés: celle où deux microphones (ou plus) sont décalés verticalement, lors d'écoutes simultanées en forêt (sol et canopée) où sur un mât de mesure éolien; les deux microphones sont sur un même point en projection au sol mais les deux stations sont distinctes, car la station a une définition d'ordre physique de la plus haute importance: c'est le volume de perception d'un microphone, qui représente le plus petit niveau d'échantillonnage spatial. Ce volume est variable en taille et en forme; au moins sept facteurs de variabilité peuvent être identifiés (hors conditions météorologiques):

- o le type de microphone. Certains détecteurs manuels haut de gamme sont équipés de microphones à membrane de Mylar; leur grand diamètre leur confère une forte directionnalité (ceci d'autant plus que les fréquences reçues sont hautes), et leur qualité de construction une grande sensibilité. La plupart des détecteurs manuels et enregistreurs automatiques est équipée de microphones à électret; ils sont de faible diamètre ce qui les rend peu directionnels, et leur sensibilité est souvent moins grande. Ainsi, entre ces deux catégories, la forme et le volume de la station d'écoute vont être différents; la forme est oblongue pour un microphone à membrane (une Pipistrelle commune chassant en sous-bois sera captée jusqu'à 25-30 mètres dans l'axe du microphone, mais à moins de 20 mètres en dehors de cet axe), alors qu'elle est de type hémisphérique pour un microphone à électret situé près du sol et sphérique s'il est situé en hauteur (la même Pipistrelle sera captée à 20 mètres environ dans l'axe comme à l'opposé);
- o <u>l'orientation du microphone</u>. Ce facteur est surtout prégnant pour un microphone à membrane, plus directionnel. Il faut garder à l'esprit la forme oblongue du volume stationnel, afin qu'il opère dans l'habitat visé par le protocole : par exemple dans un sous-bois de forêt basse, un microphone dirigé verticalement débordera inutilement (si l'on veut se restreindre aux espèces de sous-bois) au-dessus de la canopée ; une inclinaison entre 30 et 45° ciblera mieux les chiroptères volant en milieu intra forestier ;
- O l'environnement du microphone. Des signaux provenant d'un chiroptère ne seront pas transmis au microphone avec la même intensité (ni la même qualité!) selon la quantité et la nature des obstacles situés entre l'émetteur et le récepteur. Ainsi les inventaires en sous-bois induisent toujours des stations d'écoute moins volumineuses que ceux menés en milieu ouvert; ce phénomène est accentué par le fait qu'une même chauve-souris volant en sous-bois émet généralement des signaux moins intenses à la source qu'en milieu ouvert;

- o <u>le bon état de fonctionnement du microphone</u>. Certains microphones électret vieillissent rapidement et sont à remplacer régulièrement. Les microphones à membrane sont plus robustes et durables ; il peut se déposer à la longue un léger film de poussières et de graisses sur la membrane, qu'il est aisé de nettoyer avec un chiffon doux ; en cas de lésion elle peut être remplacée facilement par l'utilisateur (voir avec le constructeur) ;
- o les paramétrages du détecteur. Selon le réglage du gain (niveau de sensibilité du microphone) le volume de la station peut varier fortement. De même, dans le cas des enregistreurs automatiques, il existe plusieurs filtres (limitant le nombre de déclenchements intempestifs) dont l'un paramètre le niveau minimal d'intensité qui permet de déclencher une séquence : lorsque le réglage est modifié, la station change de volume. Ainsi, il n'est possible de comparer les résultats entre deux modèles de détecteur que s'ils ont des caractéristiques proches ; il est donc généralement fallacieux de comparer les résultats obtenus par un détecteur manuel d'une part, et un enregistreur automatique d'autre part ;
- O l'intensité du signal capté par le microphone. La disparité d'intensité des signaux sonar entre espèces de chiroptères ou entre comportements (environnements de vol, type d'activité, etc.) génère autant de volumes d'écoute que de cas différents. Cette variation très forte peut être pondérée par les coefficients de détectabilité acoustique appliqués aux espèces, qui uniformisent le volume des stations en concordance avec celui d'une Pipistrelle commune (voir le § 8. Indices d'activité);
- o <u>le rapport signal/bruit</u>. Dans un bruit de fond important (vent dans le feuillage, bord de rivière courante, stridulations d'insectes, etc.), les signaux les plus faibles sont noyés et souvent inaudibles ; cela diminue d'autant le volume d'écoute.

Ainsi, bien que la notion de station soit d'une grande importance dans le traitement des données acoustiques, nous constatons la difficulté de lisser les volumes d'échantillonnage en fonction du type de matériel, son état, sa disposition, son paramétrage... Différentes parades peuvent atténuer ces variations (uniformisation du matériel, de son état et de son paramétrage pour une étude donnée) ; d'autres préconisations sont abordées dans les sections suivantes (voir notamment le § 8. Indices d'activité).

- ❖ p. 260 : Unité de mesure de l'activité, modifier le § « Le contact acoustique est l'élément de base, l'unité quantitative de l'activité qui va permettre la comparaison entre études menées par des auteurs différents. Plusieurs travaux (Barataud, 2002b, 2006 ; Barataud & Giosa, 2010, 2012, 2014 ; Barataud et. al., 2013b, 2014, 2014a, 2014b) ont déjà testé et adopté les principes ci dessous ; il peut donc être souhaitable que les études à venir s'en inspirent. » comme suit : « Le contact acoustique est l'élément de base de la comptabilité de l'activité, qui va permettre la comparaison entre études menées par des auteurs différents. Sa définition est donc cruciale, et sa standardisation souhaitable. Plusieurs travaux (Barataud, 2002b, 2006 ; Barataud & Giosa, 2010, 2012, 2014 ; Barataud et. al., 2013b, 2014, 2014a, 2014b) ont déjà testé et adopté les principes ci-dessous, dont les études à venir peuvent s'inspirer. ».
- ❖ p. 260 & 261 : chap. Unité de mesure de l'activité ; modifier le § complet Méthode quantitative comme suit : Méthode quantitative : un contact correspond à l'occurrence de signaux d'une espèce de chiroptère, captés en hétérodyne ou en division de fréquence (les deux techniques d'écoute en direct), par tranches de cinq secondes. Ce choix résulte du calcul de la durée moyenne d'une séquence issue d'un simple passage de chiroptère en vol. Un train de signaux (même très court, de quelques signaux) constitue un contact ; si un deuxième (de la même espèce) le suit immédiatement avec un court silence entre les deux, mais que l'ensemble ne dépasse pas cinq secondes, on

comptera un contact. Si un individu reste audible plus de cinq secondes, on comptabilisera autant de contacts que de tranches de cinq secondes occupées ; ainsi une séquence durant huit secondes sera notée comme deux contacts, une séquence durant une minute et deux secondes sera comptée comme treize contacts, etc. Si les signaux de plusieurs individus d'une même espèce sont perçus simultanément, on comptabilisera et additionnera les contacts pour chacun ; il est possible d'évaluer le nombre d'individus présents pour une même espèce (grâce au recouvrement des séquences et aux éventuels décalages de fréquences individuelles comme chez les Pipistrelles par exemple) jusqu'à un maximum de cinq; au-delà l'entreprise est hasardeuse ou impossible et l'on s'en tiendra à cette limite. Une montre (ou tout autre instrument indicateur du défilement horaire à la seconde près) est donc nécessaire. Les contraintes de l'observateur, devant à la fois manipuler son détecteur et concentrer son attention sur l'identification et l'enregistrement, engendrent une certaine tolérance dans la comptabilité précise des secondes : chacun doit faire au mieux selon les circonstances. Cette méthode ne tient pas compte, par force, de la différenciation des individus fournissant les contacts : dix contacts de Pipistrelle commune peuvent provenir d'un seul ou de dix individus ; cela n'a aucune incidence puisque les résultats quantitatifs expriment une mesure de l'activité et non une abondance de chauvessouris. L'intégration de contacts visuels (au crépuscule ou dans le faisceau d'une lampe) dans les résultats acoustiques est à éviter, car elle biaise les résultats.

• p. 260 : après le § Méthode semi quantitative rajouter (après un interligne) le § suivant :

#### « Quelle unité retenir pour exprimer l'activité acoustique des chiroptères ?

Certaines études réalisées le long de transects en voiture ont utilisé une unité de mesure spatiale (le kilomètre par exemple) ; cette unité, non applicable pour des points d'écoute fixes, s'avère peu pertinente.

L'unité temporelle est la seule qui s'applique à toutes les méthodes de relevés, elle sera donc privilégiée. Certains travaux expriment l'activité en nombre de contacts par heure, d'autres en nombre de contacts (ou en minutes positives) par nuit ; quel choix s'avère le plus pertinent ?

Lorsqu'on travaille sur un grand nombre de nuits complètes (grâce à des enregistreurs automatiques), il peut sembler souhaitable, d'un point de vue statistique, de lisser une éventuelle variabilité de l'activité tout au long de la nuit, en faisant de cette dernière un ensemble indivisible, une unité temporelle. Mais ce souci de lissage a aussi des effets pervers, car on se prive de l'étude d'une variable écologique très informative : la variation du niveau d'activité au cours d'une nuit, d'une espèce à l'autre et d'une période à l'autre. Enfin et surtout, l'utilisation de la nuit comme unité se heurte à un problème essentiel : la durée de la nuit est un paramètre temporel très instable (44 % de variation entre le solstice de printemps et l'équinoxe d'automne!), ce qui est contraire à la notion d'unité de mesure, par définition stable. Cette variabilité de la durée de la nuit génère un biais notable, sans doute encore plus élevé pour ce qui concerne les espèces qui chassent tout au long de la nuit comme les Oreillards ou les Murins : plus la nuit est longue et plus l'indice est élevé, et inversement ; par suite, l'effet évident de la variation de l'unité de mesure peut masquer d'autres causes éventuelles, écologiques celles-ci, de différences d'activité entre périodes.

Il est donc préférable d'utiliser l'unité temporelle de l'heure, pour ces deux raisons : respecter le principe de stabilité d'une unité de mesure, et ne pas se priver d'une exploitation de la phénologie de l'activité nocturne. Le dilemme est résolu si l'on utilise l'unité stable en contacts/heure, que l'on calcule la moyenne ou la médiane pour

- chaque nuit inventoriée, et que l'on adapte la présentation narrative : "... l'activité est de XX c/h pour les nuits complètes de telle période...". »
- ❖ p. 260 : insérer l'encadré « Addendum2c\_12mai2012\_Applications » (PDF à télécharger).
- ❖ p. 261: insérer entre § «IDENTIFICATION» et § «TYPES D'ACTIVITE: CHASSE, TRANSIT, SOCIAL» le § suivant:

#### **DETECTABILITE DES ESPECES**

Lors d'un inventaire de la richesse spécifique au détecteur, l'observateur doit tenir compte de la probabilité de détection acoustique très variable d'une espèce à l'autre. Pour un même type de détecteur (la disparité étant parfois forte d'un modèle à l'autre concernant la qualité du traitement du signal et la courbe de réponse du microphone), la détectabilité d'une espèce est dépendante de deux facteurs principaux :

- son abondance et son ubiquité dans la zone géographique considérée ;
- l'intensité de ses signaux sonar.

Ceci implique que la pression d'observation sur un site (ensemble de stations d'écoute proches dans un habitat homogène en regard de la typologie fixée) doit tenir compte des espèces faiblement détectables. Les espèces communes à intensité d'émission moyenne ou forte (ce sont dans beaucoup de régions les Pipistrelles et la Sérotine commune) sont souvent détectés dans les dix premières minutes ; mais pour mettre en évidence une part significative des espèces plus rares dans la zone considérée ou discrètes acoustiquement (genres *Rhinolophus*, *Myotis*, *Barbastella*, *Plecotus*), un temps d'écoute minimal de plusieurs heures est nécessaire. Cette durée peut être concentrée sur une soirée, la segmentation sur plusieurs soirées consécutives n'améliorant que très peu la richesse spécifique (ARCHAUX, 2008).

Lors d'une étude réalisée dans le Massif Central (BARATAUD & GIOSA, 2012), des écoutes étaient effectuées sur des sites forestiers (n = 38), par deux observateurs en simultané, à raison de trois stations d'une heure chacune pour chaque observateur sur chaque site. Les relevés ont montré une forte disparité compositionnelle entre observateurs (48 % des espèces inventoriées n'étaient notées que par l'un ou l'autre des deux observateurs) alors que les stations n'étaient généralement distantes que de 50 à 100 m. Au terme des six heures d'écoute cumulée (sur une soirée) la richesse spécifique constatée atteignait 7,9 ± 2,7 espèces, ce qui correspondait à 40 % de la diversité maximale possible ; cette valeur varie aussi selon la qualité de l'habitat : en excluant les sites forestiers situés dans des plantations de résineux exogènes (moins attractives) et en ne retenant que les peuplements feuillus indigènes, la diversité était de 9,9 ± 2,2 espèces (50 % de la diversité maximale possible). Mais quel que soit l'habitat et malgré la proximité des stations, chaque observateur, en trois heures, n'atteignait en moyenne que 75 % du cortège inventorié à deux personnes en six heures ; les espèces détectées seulement par l'un ou l'autre des observateurs étaient dans 82,3 % des cas des espèces rares ou discrètes, donc à détectabilité faible.

Un troisième facteur, plus ponctuel, est la disparité de distribution spatio-temporelle d'une espèce. Les Noctules par exemple sont détectables plus facilement au crépuscule lorsqu'elles chassent en lisière ou au-dessus des plans d'eau et rivières, ensuite elles élèvent leur vol souvent hors de portée d'un détecteur; ainsi des relevés uniquement nocturnes risqueront de sous-estimer leur présence sur un site. Quelques espèces comme *M. capaccinii* et *M. dasycneme* ont des préférences d'habitat de chasse très restreintes à certains types de rivières ou de plans d'eau; ainsi des relevés uniquement forestiers ne permettront généralement pas de les mettre en évidence.

- p. 262 : § Indices d'activité ; insérer entre les § 1 et 2 :
  - « ...et elle est plus facile à mesurer.

L'indice d'activité en nombre de contacts par heure peut s'appliquer à n'importe quelle échelle spatiale : un point précis, un site de plusieurs hectares, un type d'habitat, une région, etc. Mais il est important de garder à l'esprit que l'unité de base du relevé acoustique reste le volume de perception du microphone, appelé « station d'écoute ». Ce volume est variable selon le type de microphone, son orientation, l'environnement immédiat plus ou moins encombré d'obstacles faisant écran, et bien entendu l'intensité d'émission du chiroptère contacté, dépendante de l'espèce et de son comportement (voir ci-dessous). Cette notion d'unité spatiale est importante car elle conditionne notre façon d'interpréter les résultats acoustiques, notamment par le fait qu'à cet espace corresponde un temps qui lui est propre. Ainsi, dix observateurs réalisant simultanément dix points d'écoute d'une heure dans une même forêt, au moment de cumuler leurs résultats, considéreront chaque volume de perception et son temps d'écoute comme une entité indissociable ; leurs relevés auront en effet pour échelle réelle la somme de leurs stations et non pas l'espace forestier, ce dernier ne pouvant être appréhendé à un même moment dans son ensemble de manière exhaustive. Les observateurs feront la moyenne de leurs dix indices horaires respectifs, au lieu de prendre la somme de leurs contacts cumulés sur l'unique heure d'inventaire. La station d'écoute est donc le volume de perception relatif à un microphone ; elle représente l'unité spatiotemporelle des inventaires acoustiques.

Les indices d'activité... ».

❖ p. 263 : tableaux 28a et 28b à remplacer par les suivants :

| milieux ouvert et semi ouvert |                               |                              |                              |  |
|-------------------------------|-------------------------------|------------------------------|------------------------------|--|
| Intensité<br>d'émission       | Espèces                       | distance<br>détection<br>(m) | coefficient<br>détectabilité |  |
|                               | Rhinolophus hipposideros      | 5                            | 5,00                         |  |
|                               | Rhinolophus ferr/eur/meh.     | 10                           | 2,50                         |  |
|                               | Myotis emarginatus            | 10                           | 2,50                         |  |
|                               | Myotis alcathoe               | 10                           | 2,50                         |  |
| très faible à                 | Myotis mystacinus             | 10                           | 2,50                         |  |
| faible                        | Myotis brandtii               | 10                           | 2,50                         |  |
|                               | Myotis daubentonii            | 15                           | 1,67                         |  |
|                               | Myotis nattereri              | 15                           | 1,67                         |  |
|                               | Myotis bechsteinii            | 15                           | 1,67                         |  |
|                               | Barbastella barbastellus      | 15                           | 1,67                         |  |
|                               | Myotis oxygnathus             | 20                           | 1,25                         |  |
|                               | Myotis myotis                 | 20                           | 1,25                         |  |
|                               | Plecotus spp (durée 4 à 6 ms) | 20                           | 1,25                         |  |
| movonno                       | Pipistrellus pygmaeus         | 25                           | 1,00                         |  |
| moyenne                       | Pipistrellus pipistrellus     | 25                           | 1,00                         |  |
|                               | Pipistrellus kuhlii           | 25                           | 1,00                         |  |
|                               | Pipistrellus nathusii         | 25                           | 1,00                         |  |
|                               | Miniopterus schreibersii      | 30                           | 0,83                         |  |
|                               | Hypsugo savii                 | 40                           | 0,63                         |  |
| forte                         | Eptesicus serotinus           | 40                           | 0,63                         |  |
|                               | Plecotus spp (durée > 6 ms)   | 40                           | 0,63                         |  |
| très forte                    | Eptesicus nilssonii           | 50                           | 0,50                         |  |
|                               | Eptesicus isabellinus         | 50                           | 0,50                         |  |
|                               | Vespertilio murinus           | 50                           | 0,50                         |  |
|                               | Nyctalus leisleri             | 80                           | 0,31                         |  |
|                               | Nyctalus noctula              | 100                          | 0,25                         |  |
|                               | Tadarida teniotis             | 150                          | 0,17                         |  |
|                               | Nyctalus lasiopterus          | 150                          | 0,17                         |  |

| sous-bois               |                               |                              |                              |  |
|-------------------------|-------------------------------|------------------------------|------------------------------|--|
| Intensité<br>d'émission | Espèces                       | distance<br>détection<br>(m) | coefficient<br>détectabilité |  |
|                         | Rhinolophus hipposideros      | 5                            | 5,00                         |  |
|                         | Plecotus spp (durée < 4 ms)   | 5                            | 5,00                         |  |
|                         | Myotis emarginatus            | 8                            | 3,13                         |  |
|                         | Myotis nattereri              | 8                            | 3,13                         |  |
|                         | Rhinolophus ferr/eur/meh.     | 10                           | 2,50                         |  |
|                         | Myotis alcathoe               | 10                           | 2,50                         |  |
| très faible à faible    | Myotis mystacinus             | 10                           | 2,50                         |  |
|                         | Myotis brandtii               | 10                           | 2,50                         |  |
|                         | Myotis daubentonii            | 10                           | 2,50                         |  |
|                         | Myotis bechsteinii            | 10                           | 2,50                         |  |
|                         | Barbastella barbastellus      | 15                           | 1,67                         |  |
|                         | Myotis oxygnathus             | 15                           | 1,67                         |  |
|                         | Myotis myotis                 | 15                           | 1,67                         |  |
| moyenne                 | Pipistrellus pygmaeus         | 25                           | 1,00                         |  |
|                         | Miniopterus schreibersii      | 25                           | 1,00                         |  |
| •                       | Pipistrellus pipistrellus     | 25                           | 1,00                         |  |
| •                       | Pipistrellus kuhlii           | 25                           | 1,00                         |  |
|                         | Pipistrellus nathusii         | 25                           | 1,00                         |  |
|                         | Plecotus spp (durée 4 à 6 ms) | 20                           | 1,25                         |  |
| forte                   | Hypsugo savii                 | 30                           | 0,83                         |  |
|                         | Eptesicus serotinus           | 30                           | 0,83                         |  |
|                         | Eptesicus nilssonii           | 50                           | 0,50                         |  |
|                         | Eptesicus isabellinus         | 50                           | 0,50                         |  |
|                         | Vespertilio murinus           | 50                           | 0,50                         |  |
| très forte              | Nyctalus leisleri             | 80                           | 0,31                         |  |
|                         | Nyctalus noctula              | 100                          | 0,25                         |  |
|                         | Tadarida teniotis             | 150                          | 0,17                         |  |
|                         | Nyctalus lasiopterus          | 150                          | 0,17                         |  |

- ❖ p. 263: troisième ligne avant la fin; remplacer « ... comparaisons d'abondance d'activité intra groupe... » par « ... comparaisons des niveaux d'activités intra groupe... ».
- ❖ p. 264 : ligne 6 ; ajouter en fin de phrase : « pour un observateur situé en sous-bois (l'écran de feuillage formé par la canopée constitue un filtre atténuateur, mais les variations fortes de densité et de nature de cette dernière rendent impossible toute tentative d'appliquer un facteur de correction universel).
- ❖ p. 264 : ligne 13 ; remplacer « valeur 1 a été attribué à une ou plusieurs espèces de Pipistrelle,... » par « valeur 1 a été attribué aux Pipistrelles,... »
- ❖ p. 264 : lignes 18 et 19 ; remplacer la phrase « On conservera par contre... (entre variables d'habitat par exemple). » par « Une espèce acoustiquement discrète présente plus de risque de ne pas apparaître dans un inventaire (la pression d'écoute est le paramètre principal d'atténuation de ce risque) ; le coefficient de détectabilité, quant à lui, corrige la discrétion de cette espèce dès qu'elle est contactée, en donnant plus de poids aux contacts acoustiques.

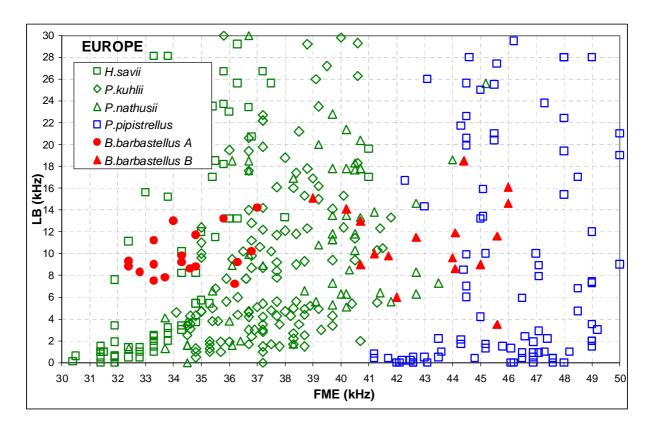
L'utilité de ces coefficients de détectabilité s'applique aussi à l'homogénéisation du volume de la station d'écoute : tous les volumes spécifiques sont ramenés à celui d'une pipistrelle.

L'application d'un coefficient pour une espèce donnée dépend des contextes environnemental et comportemental. Selon le degré d'ouverture du milieu, l'intensité du sonar varie généralement en conséquence chez certaines espèces, comme le suggèrent les deux tableaux 28a et 28b qui, pour des raisons de simplification, séparent schématiquement le degré d'encombrement du milieu en deux classes. Mais, lorsque l'observateur en a la possibilité (c'est toujours le cas lorsque les séquences sont analysées manuellement), il doit aussi tenir compte du comportement des individus, qui échappe parfois à la règle générale. Ainsi, par exemple, un Oreillard contacté en sous-bois mais produisant des signaux sonar longs et bas en fréquence donc plus intenses (comme c'est souvent le cas chez *P. austriacus*) se verra appliquer un coefficient de 1,25 comme en milieu ouvert; de même, les cris sociaux non accompagnés de signaux sonar doivent avoir un coefficient différent de ces derniers car ils sont plus intenses : par exemple 0,83 (au lieu de 1) pour le genre Pipistrellus, 1,25 (au lieu de 5) pour un *Plecotus*, 0,17 (au lieu de 0,31) pour *N. leisleri*; lorsque cris sociaux et signaux sonar sont mélangés dans une même séquence pour un même individu, on retiendra le coefficient des signaux sonar car l'activité de chasse prime sur l'activité sociale dans le diagnostique d'habitat. A l'opposé, en prairie ouverte, il arrive de contacter de l'Oreillard ou du Murin de Natterer avec des signaux sonar courts et faibles en intensité parce que ces derniers sondent la surface de la végétation : leurs coefficients seront alors respectivement de 5 et 3,1 comme en milieu

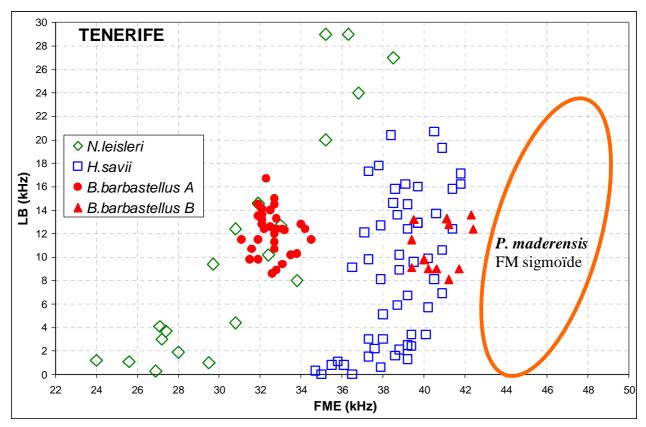
L'utilisation des coefficients s'avère donc indispensable pour comparer plusieurs entités spécifiques (espèces ou guildes d'espèces) entre elles. Mais lorsqu'on veut comparer l'activité en chiroptères toutes espèces confondues de plusieurs entités spatiales (zones géographiques, types d'habitats, etc.) ou temporelles (une même station d'écoute à plusieurs moments différents), peut-on conserver l'indice brut ( $\sum$  contacts de toutes les espèces contactées / temps d'écoute en heures), ou doit-on aussi calculer l'indice pondéré [ $\sum$ (contacts de chaque espèce \* son coefficient spécifique) / temps d'écoute en heures] ?

L'entité "toutes espèces confondues" peut difficilement être considérée comme un taxon unique car elle est composite et variable d'un lieu ou moment à l'autre : non seulement les espèces contactées au sein de deux lieux ou moments différents ne sont pas forcément les mêmes, mais leurs proportions d'activité varient. Aussi il convient de prendre en compte, au sein de chaque entité "toutes espèces confondues", chaque espèce avec sa propre probabilité de détection ; chaque indice spécifique pondéré sera calculé et c'est la somme de ces indices spécifiques qui formera la valeur de l'activité globale du lieu ou du moment. En conséquence, l'indice d'activité global "Chiroptera spp" minimisera la représentativité des espèces à forte intensité d'émission au profit des espèces à faible intensité d'émission, et cela de manière variable en fonction de leurs proportions respectives au sein des entités spatiales ou temporelles à comparer. ».

- p. 264: insérer l'encadré « Addendum2d\_13novembre2013\_Applications » (PDF à télécharger).
- ❖ p. 267: § Variables descriptives des habitats, § 4, ligne 3; remplacer « ... systématiquement une abondance d'activité... » par « systématiquement un niveau d'activité... ».


- ❖ p. p. 269 à 274 : remplacer les encadrés « cas d'école n° 1 et cas d'école n° 2 » par les encadrés du fichier PDF : « Edition3\_Addendum2\_fevrier2019\_descrition-habitat\_classification-especes ».
- ❖ 271: ligne 2; remplacer « Barataud, 2010 » par « Barataud et al., 2013 ».
- p. 277 : corriger les rubriques erronées du tableau (voir en fin de document).
- ❖ p. 282 : § 1, lignes 3 et 4 ; ajouter : « ... et de mises à jour plus récentes (Barataud, 2011 ; Barataud *et al.*, 2014b).
- ❖ p. 282 : § 2, ligne 4 ; ajouter : « ...espaces libres sous canopée) de la végétation arborée (Barataud, 1999, Barataud *et al.*, 2014b).
- p. 282 : chap. « Description des signaux alternés de B. barbastellus », § 2 (alt. type B), ligne 4; remplacer: «; le type A est presque toujours plus intense que le type B, quelles que soient les circonstances de vol et la position de l'observateur par rapport à l'animal émetteur ; l'amplitude de cette différence ne peut s'expliquer uniquement par les fréquences du type B qui seraient plus atténuées que les fréquences du type A plus basses de 9 kHz. Souvent lorsque l'individu s'éloigne le type B est à peine audible alors que le type A l'est encore correctement. » par « . Le type A est toujours reçu avec une intensité plus forte que le type B par un observateur situé au sol; pour un observateur écoutant depuis une situation élevée (micro situé en canopée par exemple) cette disposition s'inverse comme de nombreux tests effectués en Limousin en 2014 le démontrent (son DVD 3.95a). Cette caractéristique pourrait être due au fait que le type A est émis par la bouche et le type B par les narines, comme semblent l'attester leurs différences de sonorité et de répartition de l'énergie entre fondamental et harmonique 1. Les émissions buccales du type A seraient dirigées vers le bas, et les émissions nasales du type B seraient naturellement dirigées vers le haut grâce à une conformation particulière des conduits nasaux (Seibert et al., 2015). ».
- ❖ p. 284 : § « Comparaison entre signaux alternés de B. barbastellus et N. noctula », , fin du § 2 ; ajouter : « ... et déterminer la position dans l'espace d'une proie éventuelle à moyenne distance (FM aplanie). L'alternance de signaux différents peut aussi, pour ces espèces à grande portée du signal, leur permettre de rattacher un écho reçu à son homologue émis en diminuant le risque de confusion. ».
- ❖ p. 285 : ligne 6 ; ajouter : « ... régulière de deux types de signaux aux caractéristiques très différentes (en intensité à cause de l'écart directionnel entre les deux signaux, en structure et en fréquence),... ».
- p. 286 : début du 1<sup>er</sup> §, rajouter le § suivant :

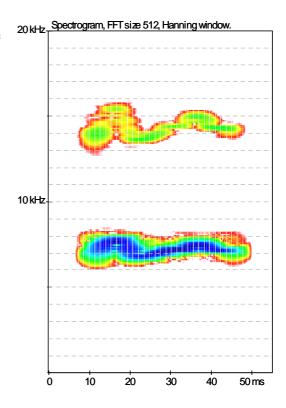
Cette hypothèse est confortée par l'étude (Barataud *et al.*, 2020) des fréquences des signaux sonar de types A et B pratiqués par *Barbastella barbastellus guanchae* présente dans les îles de Tenerife et La Gomera (Canaries). Sur ces îles, les valeurs de FME sont plus basses que celles relevées sur le continent (**Tableau 29**), où elles se superposent aux couples d'espèces les plus abondants localement selon les contextes géographiques (**Figure 190a**). Mais le cortège spécifique aux Canaries est plus restreint et ne comprend pas d'espèce FM aplanie sur des FME supérieures à 42 kHz (*P. maderensis* occupe cette niche fréquentielle mais émet la plupart du temps des signaux FM sigmoïde à bande moyenne à large, proches de ceux des *Myotis* continentaux). *B. barbastellus guanchae* a donc certainement dû diminuer la FME de ses signaux pour se superposer aux fréquences FM aplanie les plus fréquentes sur l'île,


qui correspondent à *H. savii* et *N. leisleri*, par ailleurs toutes deux plus élevées en FME que sur le continent (**Figure 190a**).

**Tableau 29** : comparaison des valeurs de LB (largeur de bande) et FME (fréquence du maximum d'énergie) entre les signaux sonar de types A et B émis par *B. barbastellus* sur le continent européen et aux Canaries.

| Espèces                 | Туре | Origine  | LB   |        | FME  |        |
|-------------------------|------|----------|------|--------|------|--------|
| Lapeces                 |      |          | Moy. | E-Type | Moy. | E-Type |
| B.barbastellus guanchae | Α    | Tenerife | 12,1 | 1,9    | 32,6 | 0,8    |
| B.barbastellus          | Α    | Europe   | 9,8  | 2,0    | 34,5 | 1,5    |
| B.barbastellus guanchae | В    | Tenerife | 11,1 | 2,3    | 41,2 | 1,9    |
| B.barbastellus          | В    | Europe   | 11,3 | 3,8    | 43,1 | 2,3    |




**Figure 190a**: en Europe, recouvrement des valeurs de FME (fréquence du maximum d'énergie) et LB (largeur de bande) de signaux de types A et B de *B. barbastellus*, avec celles d'autres espèces dont les signaux sonar constituent un « bruit de fond » courant selon les zones géographiques.



**Figure 190b**: sur Tenerife, recouvrement des valeurs de FME (fréquence du maximum d'énergie) et LB (largeur de bande) de signaux de types A et B de *B. barbastellus guanchae*, avec celles d'autres espèces dont les signaux sonar constituent un « bruit de fond » en FM aplanie, courant sur ces îles.

- ❖ p. 286 : ligne 1, remplacer « Chez les chiroptères consommant régulièrement ce type de proies on constate des adaptations visant à diminuer la perception de leurs signaux sonar par les insectes. » par : « Chez les chiroptères consommant régulièrement des proies tympanées on constate des adaptations visant à être acoustiquement discrets visà-vis de ces insectes. »
- ❖ p. 286 : § 3, ligne 5 ; remplacer : « Or la Barbastelle utilise deux types de signaux, l'un faible mais l'autre à l'intensité bien plus forte. » par « Or la Barbastelle utilise deux types de signaux dont l'intensité paraît faible pour l'un et forte pour l'autre grâce à des différences de directivité. ».
- p. 288 : dernier §, ligne 3; remplacer : « ...stimulation sensorielle (technique d'auto émission par exemple); pour... » par « ...stimulation sensorielle (technique d'oto-émission par exemple) ».
- p. 296: lignes 4-5; remplacer « (Barataud, 2009) » par « (Barataud *et al.*, 2013a);

• p. 291 : remplacer l'image de la figure 195 par celle-ci-contre



- ❖ p. 294: remplacer titre « Les émissions « explosives » de N. leisleri » par « Les « salves surprise » de N. leisleri »
- ❖ p. 307: § « A propos de l'activité » ; remplacer « Pour les séquences longues sans interruption, on compte un contact supplémentaire pour chaque nouvelle tranche de 5 secondes écoulée ; selon cette règle des tranches de 5 secondes <u>pleines</u>, on ne comptabilisera donc deux contacts qu'à partir de la dixième seconde : ainsi 9 secondes font 1 contact, 10 ou 14 secondes font 2 contacts, 60 secondes font 12 contacts, etc. » par « Pour les séquences longues sans interruption, on compte un contact supplémentaire pour chaque nouvelle tranche de 5 secondes <u>commencée</u> ; selon cette règle, on ne comptabilisera donc deux contacts qu'à partir de la sixième seconde : ainsi 6 ou 9 secondes font 2 contacts, 11 ou 14 secondes font 3 contacts, 60 secondes font 12 contacts, etc. ».
- ❖ p. 308 : premier §, modifier comme suit : « Si bien sûr : le raisonnement ci-dessus ne vaut que pour les séquences moyennes à longues (à partir de 5 secondes), mais toute séquence de moins de 5 secondes (même quelques signaux sur moins d'une seconde) vaut un contact. ».
- ❖ p. 308: modifier titre du §: « Vaut-il mieux comptabiliser en semi quantitatif ou en qualitatif? » par « Vaut-il mieux comptabiliser en semi quantitatif ou en quantitatif? ».
- p. 309 : ligne 2 ; remplacer « ... différents (abondance d'activité variant parfois ... » par « ... différents (niveau d'activité variant parfois ... ».
- ❖ p. 312 : § « Evolution du matériel », ligne 1 ; modifier : « Entre 1980 et 2015... ».
- ❖ p. 313 : § « Extension de la méthode », ligne 9 ; modifier : « de l'étude d'habitats ou de l'écologie acoustique, des processus et leurs résultats ont pu être rapidement élaborés... ».

❖ p. 313 et 314 : § « Transmission du savoir » ; remplacer : « Publier c'est faire savoir. Ballades dans l'inaudible, manuel pratique dédié à l'identification auditive, a touché plusieurs milliers de personnes en Europe. Ce nouvel ouvrage de synthèse a vocation à compléter l'information des initiés, et conduire les premiers pas des débutants. Il a été, autant que possible, réalisé avec le souci de rendre l'observateur indépendant d'une transmission orale de la part des collègues confirmés ; si une bonne part des lecteurs motivés peut accéder à l'autonomie dans le domaine de l'identification acoustique des chiroptères avec la seule aide de ce manuel, l'objectif souhaité sera atteint.

L'expérience de ces quinze dernières années montre cependant que la communication directe entre individus est une aide précieuse dans le processus d'apprentissage.

Le premier stage d'initiation à cette méthode d'identification (uniquement auditive à cette époque) a eu lieu en 1995. Jusqu'en 2006, à raison d'une session de quatre jours par an, un groupe restreint de stagiaires (environ cinquante) issus de la plupart des régions de France et de quelques pays limitrophes a reçu une formation continue, dans le but que chacun puisse à son tour devenir formateur et organiser des stages interrégionaux ; c'est le cas depuis 2007, alors que les sessions de formation nationales continuent à destination des professionnels des Parcs Nationaux, réserves, ONF, bureaux d'études, associations, etc. A ce jour ce sont plus de 300 personnes qui ont eu accès à ces stages. » par « Publier c'est faire don de ce que l'on a appris. Ballades dans l'inaudible, manuel pratique dédié à l'identification auditive, a touché plusieurs milliers de personnes en Europe grâce à ses versions française, anglaise et allemande. Ce nouvel ouvrage de synthèse a vocation à compléter l'information des initiés, et conduire les premiers pas des débutants. Il a été, autant que possible, réalisé avec le souci de rendre l'observateur indépendant d'une transmission orale de la part des collègues confirmés; si une bonne part des lecteurs motivés peut accéder à l'autonomie dans le domaine de l'identification acoustique des chiroptères avec la seule aide de ce manuel, l'objectif souhaité sera atteint.

L'expérience de ces vingt dernières années montre cependant que la communication directe entre individus est une aide précieuse dans le processus d'apprentissage.

Le premier « European Bat Detector Workshop » a été organisé en 1991 aux Pays-Bas grâce à l'initiative de Kees Kaptein et Herman Limpens. Depuis, des sessions de formation à l'acoustique ont eu lieu dans plusieurs pays. En France, le premier stage d'initiation à cette méthode d'identification (uniquement auditive à cette époque) a eu lieu en 1995. Jusqu'en 2006, à raison d'une session de quatre jours par an, un groupe restreint de stagiaires (environ cinquante) issus de la plupart des régions de France et de quelques pays limitrophes a reçu une formation continue, dans le but que chacun puisse à son tour devenir formateur et organiser des stages interrégionaux ; c'est le cas depuis 2007, alors que les sessions de formation nationales continuent à destination des professionnels des Parcs Nationaux, réserves, ONF, bureaux d'études, associations, etc. Un décompte réalisé en 2014 montre que les 88 stages nationaux et interrégionaux organisés en France ont cumulé 1485 participants.

- ❖ p. 318 : colonne de gauche, supprimer la neuvième référence ; « BARATAUD, M. 2010. Bio évaluation des peuplements de mélèze commun (*Larix decidua*) dans le Parc National du Mercantour, par l'étude des chiroptères en activité de chasse. Rapport d'étude. 41 pp. »
- ❖ p. 318: supprimer la référence suivante: BARATAUD, M. & S. GIOSA. 2012. Biodiversité des chiroptères et gestions forestières en Limousin. Rapport d'étude GMHL. 32 pp. http://ecologieacoustique.fr/?page\_id=11
- p. 318 : rajouter les références suivantes :

- Andriollo T., Naciri Y. & M. Ruedi. 2015. Two mitochondrial barcodes for one biological species: the case of European Kuhl's pipistrelles (Chiroptera). *PLoS ONE*, 10: e0134881. two: 10.1371/journal. pone.0134881.
- Arlettaz, R.. 1996. Feeding behaviour and foraging strategy of free-living mouse-eared bats, *Myotis myotis* and *Myotis blythii*. *Animal Beheviour* 51: 1-11.
- Barataud, J., M. Barataud & Y. Bas. 2020. Comportement acoustique des chiroptères de Tenerife (archipel des Canaries). *Plume de Naturalistes* 4 : 1-26.
- Barataud, M., A. Duranel, F. Grandemange & A. Lugon. 2009. Etude d'une colonie de mise-bas de *Myotis bechsteinii* Kuhl, 1817 Sélection des gîtes et des habitats de chasse, régime alimentaire et implications dans la gestion de l'habitat forestier. *Le Rhinolophe* 18 : 83-112.
- Barataud, M. & S. Giosa. 2021. Activité de chasse des chiroptères forestiers, comparée entre sol et canopée. *Plume de Naturalistes* 5 : 1-38.
- Barataud, M., S. Giosa, J. Grandadam & J. Jemin. 2016. Diversité des chiroptères dans les peuplements forestiers du Limousin (France). *Le Vespère* 6 : 397-429. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
- Creţu G., M. Barataud, T. Kessels, R. Gütz & T. Metz. 2022. The bat fauna of the Erlenbusch (Frechen, North Rhine- Westphalia, Germany); preliminary results. *Plume de Naturalistes* 6: 67-86.
- Jones, G. & E. Teeling. 2006. The evolution of echolocation in bats. *Trends in Ecology and Evolution* 21(3): 149-156.
- Lefevre, A. & M. Barataud. 2020. Comportement acoustique de *Nyctalus azoreum* sur l'île de São Miguel (archipel des Açores). *Plume de Naturalistes* 4 : 27-42.
- Mata, V.A., F. Amorim, M.F.V. Corley, G.F McCracken, H. Rebelo, P. Beja. 2016. Female dietary bias towards large migratory moths in the European free-tailed bat (*Tadarida teniotis*). *Biol. Lett.* 12: 20150988.
- Miller, L.A. & A. Surlykke. 2001. How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator. *BioScience* 51(7): 571-581.
- Montauban, C., M. Mas, C. Tuneu-Corral, O.S. Wangensteen, I. Budinski, J. Martí-Carreras, C. Flaquer, X. Puig-Montserrat & A. López-Baucells. 2021. Bat echolocation plasticity in allopatry: a call for caution in acoustic identification of Pipistrellus sp. *Behavioral Ecology and Sociobiology* 75: 70.
- Puechmaille, S.J., I.M. Borissov, S. Zsebok, B. Allegrini, M. Hizem, S. Kuenzel, M.e Schuchmann, E.C. Teeling, B.M. Siemers. Female Mate Choice Can Drive the Evolution of High Frequency Echolocation in Bats: A Case Study with *Rhinolophus mehelyi. PLoS ONE* 9(7): e103452. doi:10.1371/journal.pone.0103452
- Roue, S.Y. & M. Barataud (Coordinateurs). 1999. Habitats et activité de chasse des chiroptères menacés en Europe : synthèse des connaissances actuelles en vue d'une gestion conservatrice. *Le Rhinolophe*, Vol. Spéc. n°2 . 137 p. http://ecologieacoustique.fr/wp-content/uploads/1999\_RoueBarataud\_HabitatsReg-alim\_Chiropteres-AnnII.pdf
- Stoffberg, S., D.S. Jacobs & C.A. Matthee. 2011. The Divergence of Echolocation Frequency in Horseshoe Bats: Moth Hearing, Body Size or Habitat? *J. Mammal. Evol.* DOI 10.1007/s10914-011-9158-x
- Vrignault, J-D. & M. Barataud. 2021. Comportement acoustique de *Pipistrellus kuhlii* sur l'île de Crête (Grèce); utilisation de la FM sigmoïde en action de chasse. *Plume de Naturalistes* 5 : 129-138.

- p. 318 : rajouter (dans l'ordre alphabétique) les références suivantes :
  - **BARATAUD, J., M. BARATAUD & Y. BAS.** 2020. Comportement acoustique des chiroptères de Tenerife (archipel des Canaries). *Plume de Naturalistes* 4 : 1-26.
  - **BARATAUD, M. 2002.** Inventaire au détecteur d'ultrasons des chiroptères en vallée d'Asco (Corse) et bioévaluation des peuplements forestiers à Pin laricio. Rapport d'étude. 13 pp. + annexe. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
  - **BARATAUD, M. 2006.** Inventaire des chiroptères sur leurs terrains de chasse au sein du PNR Oise-Pays de France. Rapport 13 pp. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
  - **BARATAUD, M., D. DEMONTOUX, P. FAVRE, S. GIOSA & J. GRANDADAM**. 2013. Bio évaluation des peuplements de mélèze commun (*Larix decidua*) dans le Parc National du Mercantour, par l'étude des chiroptères en activité de chasse. *Le Rhinolophe* 19 : 59 86. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
  - **BARATAUD, M., D. DEMONTOUX & S. GIOSA**. 2014a. Fréquentation des prairies de fauche par les chiroptères en chasse dans les Alpes du sud. *Le Vespère* 3 : 195-208. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
  - **BARATAUD, M., S. GIOSA, , G. ISSARTEL & J. JEMIN**. 2014. Bio évaluation des forêts de Martinique par l'étude de l'activité des guildes de chiroptères. Rapport final, SFEPM, Paris. 68 pp. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
- **BARATAUD, J., M. BARATAUD, S. GIOSA & J. VITTIER.** 2014b. Suivi temporel acoustique des chiroptères forestiers du Limousin. Saison 2014. Application du protocole, année 1. GMHL, Limoges. Rapport 20 pp. <a href="http://ecologieacoustique.fr/?page\_id=11">http://ecologieacoustique.fr/?page\_id=11</a>
- **BARATAUD, M. & S. GIOSA. 2012.** Biodiversité des chiroptères et gestions forestières en Limousin. Rapport d'étude GMHL. 32 pp. http://ecologieacoustique.fr/?page\_id=11
- **DOBSON, G.E.** 1875. Conspectus of the Suborders, Families, and Genera of Chiroptera arranged according to their Natural Affinities. *Mag. Natural History* 16: 345-350.
- **DOBSON, G.E.** 1878. Catalogue of the Chiroptera in the collection of the British Museum. 367 p. London, Trustees British Museum.
- **HAQUART, A. 2013.** Référentiel d'activité des chiroptères, éléments pour l'interprétation des dénombrements de chiroptères avec les méthodes acoustiques en zone méditerranéenne française : Biotope, Ecole Pratique des Hautes Etudes, 99 p.
- **LONG, G.R. & H.**U. **SCHNITZLER.** 1975. Behavioral audiograms from the bat, *Rhinolophus ferrumequinum*. *Journal of Comparative Physiology* **100**: 211–219.
- **MIDDLETON, N., A. FROUD and K. FRENCH. 2014.** Social calls of the bats of Britain and Ireland. Exeter: Pelagic Publishing. 176 pp. ISBN 978-1-907807-97-8 (Pbk).
- **PAPADATOU E., R. K BUTLIN & J. D ALTRINGHAM. 2008**. Identification of bat species in Greece from their echolocation calls. *Acta Chiropterologica* 10 (1): 127-143.
- **PFALZER, G. & J. KUSH. 2002.** Structure and variability of bat social calls: implications for specificity and individual recognition. *Journal of Zoology* 261: 21-33.
- **SEIBERT, A-M., J.C. KOBLITZ, A. DENZINGER & H-U. SCHNITZLER.** 2015. Bidirectional echolocation in the bat *Barbastella barbastellus*: Different signals of low source level are emitted upward through the nose and downward through the mouth. http://dx.doi.org/10.7910/DVN/29104 Harvard Dataverse Network.

**SIEMERS B. M., K. BEEDHOLM, C. DIETZ, I. DIETZ & T. IVANOVA. 2005**. Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? *Acta Chiropterologica* 7 (2): 259-274.

**VOIGT-HEUCKE, S.L., M. TABORSKY & D.N.K. DECHMANN.** 2010. A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. *Animal Behaviour* 80: 59-67.

• p. 320 : rajouter l'encadré suivant en dessous du titre de haut de page :

Les graphiques bivariés reproduits dans le livre et contenus dans les fichiers Excel du DVD sont à tout moment susceptibles d'être complétés, voire modifiés, au gré des avancées de la recherche.

Les versions mises à jour sont téléchargeables sur le blog http://ecologieacoustique.fr

# Fichiers téléchargeables en ligne :

- dossier « SONS »; sous-dossier « 2\_Hétérodyne »; fichier PDF « Commentaires\_sequences\_heterodyne »; ajouter les § suivants p. 4 :
  - o son DVD2.43a: bord de plan d'eau avec quelques arbres isolés; un individu chasse au crépuscule le long de la rive plus ou moins loin des arbres; les variations de sonorité indiquent des signaux en FM aplanie, avec un battement zéro sur 22,8 kHz; lors des phases à rythme plus lent, l'absence d'alternance de signaux décalés en fréquence et en structure élimine le genre *Nyctalus*; le genre *Eptesicus* est donc retenu car nous sommes dans le sud de l'Espagne (Sierra de Cazorla, Andalousie) où *V. murinus* est absente; la fréquence basse alors que l'animal est en chasse active, associé au rythme plutôt régulier sur les phases de croisière permettent d'identifier *E. isabellinus* de manière probable.
  - o son DVD2.43b: pente à boisement lâche avec rochers; quelques individus chassent juste au-dessus de la canopée; les variations de sonorité indiquent des signaux en FM aplanie, l'enregistrement a été réalisé sur 23,7 kHz; lors des phases à rythme plus lent, l'absence d'alternance de signaux décalés en fréquence et en structure élimine le genre *Nyctalus*; le genre *Eptesicus* est donc retenu car nous sommes dans l'ouest de l'Espagne (Monfrague, Extremadure) où *V. murinus* est absente; la fréquence basse alors que l'animal est en chasse active, associé au rythme répétant fréquemment un phrasé sur trois temps permettent d'identifier *E. isabellinus* de manière probable.
- ❖ dossier « SONS » ; sous-dossier « 3\_Expansion de temps x 10 » ; fichier PDF « Commentaires\_sequences\_expansion x 10 » ; p. 2 ; son DVD 3.32 : le commentaire de cette séquence est incomplet ; son DVD 3.33 : le commentaire de cette séquence est erroné. Le fichier corrigé est téléchargeable dans la rubrique « Mises à jour de texte ».

- ❖ dossier « SONS »; sous-dossier « 3\_Expansion de temps x 10 »; fichier PDF « Commentaires\_sequences\_expansion x 10 »; p. 4 & 5; sons DVD 3.61 & 3.63 : les commentaires de ces deux séquences sont inversés; Le fichier corrigé est téléchargeable dans la rubrique « Mises à jour de texte ».
- dossier « SONS »; sous-dossier « 3\_Expansion de temps x 10 »; légende du son 174; remplacer « 174\_abs-moy\_claq-bas\_M.nattereri\_Creuse\_juin2008 » par « 174\_abs-bas\_claq-bas\_M-nattereri\_Creuse\_juin2008 ».
- ❖ dossier « SONS »; sous-dossier « 3\_Expansion de temps x 10 »; fichier PDF « Commentaires\_sequences\_expansion x 10 »; ajouter les § suivants :
  - o son DVD 3.36a: séquence débutant par des signaux QFC à bande moyenne puis par des FM aplanie à bande étroite, sur 26-27 kHz; on constate une alternance irrégulière de FME, mais dont l'écart est faible (< 1 kHz le plus souvent: il est utile d'écouter en hétérodyne avec le virtual bat detector de BatSound pour bien faire la différence avec N. leisleri par ex.). Une QFC basse juste avant l'approche est intrigante (phénomène déjà enregistré chez N. lasiopterus, voir son DVD 3.48) et pourrait révéler un souci de détection d'arrière plan lointain ou une stratégie de brouillage vis-à-vis d'une proie tympanée. Le rythme rapide de la dernière partie en QFC sans alternance ne convient pas à un transit passif de Nlei sans alternance, et de plus, les durées sont supérieures à 20 ms: V. murinus; niveau de confiance: probable à certain.
  - o **son DVD 3.37a:** signaux QFC longue durée (18 à 21,5 ms, ce qui est trop long pour *N. leisleri* en transit) avec une FME aux environs de 22 kHz; l'amorce est explosive. Une légère augmentation de la récurrence en première moitié de séquence indique une curiosité de l'animal peu compatible avec un transit passif (ce qui élimine *E. serotinus*). La localité géographique (Extremadure, Espagne) rend *V. murinus* peu probable, d'autant que certaines FT sont en dessous de 21 kHz; la séquence a été enregistrée dans un secteur où la grande majorité des colonies de sérotines répertoriées appartiennent à *E. isabellinus* (SCHREUR, comm. pers.). Ces signaux QFC longue durée semblent typique de l'espèce lorsqu'elle pratique son mode de chasse très aérien au crépuscule; par contre lorsqu'elle se rapproche des obstacles, ses signaux FM aplanie sont en recouvrement avec ceux des autres espèces, *E. serotinus* notamment. *E. isabellinus*; niveau de confiance : certain.
  - o son DVD 3.77a: séquence d'*E. serotinus* en sous-bois, avec des signaux FM à durée courte dont la sonorité est légèrement nasillarde; sur une séquence courte et homogène comme celle-ci, la confusion avec les genres *Plecotus* et surtout *Barbastella* (car l'amorce est progressive) est possible. Mais ce comportement (par ailleurs rare) est de courte durée, le plus souvent précédé et/ou suivi de signaux plus typiques (comme les derniers signaux de cette séquence, qui amorcent une transition).
  - o **son DVD3.77b**: séquence d'*E. serotinus* en sous-bois, avec des signaux FM à durée courte dont la sonorité est légèrement nasillarde; l'individu produit une phase de capture puis une ressource près de la végétation dense ce qui occasionne une longue phase de rythme rapide; les derniers signaux de la séquence redeviennent typiques de l'espèce.

- o **son DVD 3.95a**: séquence alternée de *B. barbastellus* volant en sous-bois, enregistrée depuis un micro déposé à 25 mètres dans la canopée: le type B paraît plus fort au contraire des séquences enregistrées depuis le sol (voir Chap. 6, Ex. 1, Le sonar de la Barbastelle).
- o son DVD3.154a : longue séquence réalisée en sous-bois peu dense ; on entend une première série de signaux abs ht (avec un très léger claquement, peut-être dû à un écho; l'amorce est, elle, clairement progressive), suivie d'une phase en claq bas caractérisant M. nattereri grâce à la courbure convexe des signaux. A partir de 20500 ms apparaissent d'autres signaux hautes fréquences provenant d'un autre individu : la courbure terminale brutalement concave annonçant une QFC, bien visible à 24850 ms, confirme la sensation auditive (faible LB, légère amorce explosive) d'appartenance à P. pipistrellus en FM aplanie tronquée ; cette dernière s'éloigne brutalement à 32850 ms. A partir de 48000 ms apparaît une nouvelle série de signaux hautes fréquences de M. nattereri; attention à ne pas les confondre avec des signaux FM de P. pipistrellus : ici l'amorce est progressive, un très léger claquement est à nouveau perceptible ; pourtant les mesures de durée, FT, LB et FME sont très semblables entre les deux espèces, et la courbure est aussi hyperbolique (mais elle n'est pas concentrée dans l'extrême partie terminale comme chez P. pipistrellus). La confirmation intervient lorsque ces signaux deviennent progressivement du claq bas. S'ensuit une nouvelle phase (à partir de 63000 ms) où l'individu semble « hésiter » entre l'abs ht et le claq bas, pour (à partir de 83700 ms) produire une série de signaux abs ht (parfois la FT descend jusqu'à 25) de longue durée et de forme sigmoïde, ce qui est un comportement acoustique rare chez M. nattereri; à 121600 ms on observe à nouveau une série de signaux claq bas correspondant à une approche d'obstacles. Cette séquence est remarquable par la diversité des types de signaux abs ht, montrant la plasticité acoustique de M. nattereri malgré sa spécialisation forte sur le type claq bas.
- o son DVD 3.192a: cette séquence reprend plusieurs caractéristiques des émissions de *M. myotis* en chasse en sous-bois. Les premiers signaux sont en abs moy avec une FME entre 40 et 44 kHz; le rythme particulièrement lent (intervalles 110 à 300 ms) rend *M. bechsteinii* (qui serait alors en abs bas) et *M. mystacinus* (qui même en milieu ouvert a des intervalles moyens inférieurs à 100 ms) très peu probables; la différence d'intensité entre signaux est également une caractéristique. Après 1,5 secondes les signaux augmentent brusquement en FME (30 kHz environ) un rythme d'abord lent puis croissant, la FT est aux alentours de 30 kHz. Entre 7 et 7,5 secondes un signal se distingue brutalement des autres par son intensité plus forte. Tous ces critères (récurrence faible en abs moy; variations de rythme, d'intensité, de FME) sont autant de signatures du comportement typique de l'espèce en sous-bois.
- o son DVD 3.166a: *M. mystacinus* en vol dans une petite clairière, non loin de la lisière arborée; mis à part quelques phases d'am moy (entre 8000 et 10000 ms par ex) la plupart des signaux sont en abs moy (entre 5000 et 7000 ms par ex aucune amorce n'est audible; attention: la saturation de quelques signaux génère un craquement artefactuel à ne pas confondre avec un pic d'énergie). Sur de nombreux signaux on perçoit une légère amorce, si peu marquée que la frontière avec l'abs moy est ténue: on sent que l'animal « hésite » entre les deux. Vers 12000 ms on entend une phase de capture: le comportement

- acoustique de recherche passive en milieu semi ouvert n'empêche pas l'individu de profiter d'une opportunité.
- o son DVD 3.173a: séquence en sous-bois de *M. myotis* avec quelques signaux abs ht suivis aussitôt de signaux abs moy classiques dans un contexte de chasse en forêt; la récurrence est ici moyenne (intervalles entre 70 et 90 ms) mais elle est souvent beaucoup plus lente. Ces phases à fréquence terminale > 30 kHz sont assez rares et toujours très courtes (4 à 5 signaux); leur agencement rappelle celui des signaux abs ht de *M. nattereri*, mais avec une FME plus haute chez ce dernier.
- son DVD 3.173b: séquence débutant par des signaux QFC-FM sur environ 38 kHz de FME, ces signaux prenant progressivement (et de façon irrégulière) de la largeur de bande par une augmentation de la fréquence initiale, leur donnant une structure FM sigmoïde; l'analyse auditive pourrait conclure à de la FM abrupte de *Myotis* en abs moy, mais les variations de structure et de largeur de bande parfois d'un signal à l'autre donne l'alerte; de plus, deux individus sont présents, et des trilles sociales sur 30 kHz environ sont produites par l'un d'eux. Il s'agit d'un comportement social ponctuel de *P. kuhlii*. Enregistrement: Julien Vittier.
- o son DVD 3.173c: séquence où deux individus de *P. kuhlii* sont présents; les signaux FM aplanie typiques du début se déforment peu à peu pour adopter la structure FM sigmoïde du comportement social décrit dans la séquence 3.173b; les trilles sont également présentes. Enregistrement: Loïc Bellion.
- o son DVD 3.174a: séquence de transition claq bas et abs bas chez *M. nattereri*; les signaux claq bas ont la forme entièrement convexe typique de l'espèce; les signaux abs bas correspondent au passage de l'individu en milieu ouvert; on constate un allongement de la durée et une courbure qui devient sigmoïde. Il subsiste parfois sur ce type de signal une très légère sensation de claquement final (ce n'est pas un vrai claquement: l'intensité se termine brutalement en fin de signal), sans doute en lien avec le comportement toujours associé d'un vol longeant une lisière horizontale: on retrouve ce même critère sur les signaux abs bas des grands *Myotis* lorsqu'ils sondent passivement le sol ou la végétation. La distinction est très difficile entre *M. myotis/oxygnathus* et *M. nattereri* pour ces signaux abs bas sigmoïdes (à claquement très faible), seule la présence de signaux claq bas associés peut trancher (critères de courbures et d'intensité); par contre ce léger claquement est toujours absent des signaux abs bas de *M. bechsteinii*.
- o <u>son 3.208a</u>: autre séquence de chant de *N. leisleri*. Vers 1 min. 15 sec. un autre individu arrive en mode sonar (double fonction sonar-social?), avec des signaux très variables en LB et structure; la plupart sont des FM sigmoïdes, mais on notre une QFC de 2,5 ms, ce qui est un record de brièveté pour cette espèce.

| RUBRIQUE          | TYPE                                 | Sous-type                     | DEFINITION                                                                                                                                                                                                                                                                                       |
|-------------------|--------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Vent                                 | nul, faible, moyen, fort      |                                                                                                                                                                                                                                                                                                  |
| Météo             | Pluie                                | avant ou pendant relevé       |                                                                                                                                                                                                                                                                                                  |
|                   | Lune                                 | absente ; 1/2 ; pleine        |                                                                                                                                                                                                                                                                                                  |
|                   | Température                          |                               |                                                                                                                                                                                                                                                                                                  |
|                   | -                                    | par tranches de 100m          |                                                                                                                                                                                                                                                                                                  |
| Altitude          |                                      | en plaine, voire + en         |                                                                                                                                                                                                                                                                                                  |
|                   |                                      | montagne                      |                                                                                                                                                                                                                                                                                                  |
| Tranche           | Heure                                |                               | légale ou UTM au choix                                                                                                                                                                                                                                                                           |
| horaire           | Minutes                              |                               | tranches de 1 à 12 sur cadran montre : 1 = entre 1 et 5' ; 2 = entre 5 et 10' ; etc.                                                                                                                                                                                                             |
| Nombre contacts   |                                      |                               | 1 contact = occurrence acoustique d'un individu (max. décelable : 5) pour chaque tranche de 5 secondes.                                                                                                                                                                                          |
|                   | Chasse                               |                               | rythme caractéristique (rapide et régulier, phase de capture) d'une activité de recherche de proies                                                                                                                                                                                              |
| Activité          | Transit                              |                               | rythme lent sur passage unique                                                                                                                                                                                                                                                                   |
|                   | Social                               |                               | émissions à caractère social (structure et/ou rythmique particulière)                                                                                                                                                                                                                            |
|                   | Feuillus                             |                               | feuillus dominants à + de 80 % en étage supérieur                                                                                                                                                                                                                                                |
| Type<br>forestier | Résineux                             |                               | résineux dominants à + de 80 % en étage supérieur                                                                                                                                                                                                                                                |
|                   | Mixte                                |                               | feuillus et résineux mélangés (pied par pied ou par bouquets)                                                                                                                                                                                                                                    |
|                   | Futaie                               | régulière                     | 1 classe d'âge et absence de sous étage ligneux                                                                                                                                                                                                                                                  |
|                   |                                      | irrégulière                   | au moins deux classes d'âge arborées + sous                                                                                                                                                                                                                                                      |
| Structure         | Taillis sous<br>futaie (TSF)         |                               | étage arbustif présent  Mélange de cépées et de semenciers, en disposition ponctuelle ou linéaire (bord de chemin avec vieux arbres en taillis pur par ex)                                                                                                                                       |
|                   | Taillis                              |                               | Tiges en cépées uniquement                                                                                                                                                                                                                                                                       |
| Age               | Arbres futaie<br>(futaies, TSF)      | 30 ; 50 ; 80 ; 120 et +       | Pour le TSF: noter seulement âge futaie si taillis < 50 ans; si taillis > 50 ans, classer en futaie irrégulière; l'âge réel est moins important que l'âge relatif (allure des arbres: diamètre du tronc, structure des charpentières = allure de peuplement plus ou moins jeune, mature, vieux). |
|                   | Taillis                              | 15; 30; 50 et +               |                                                                                                                                                                                                                                                                                                  |
| Essences          |                                      |                               | Essences dominantes (niveau genre au minimum)                                                                                                                                                                                                                                                    |
|                   | Lisière<br>(couloir de vol<br>ouvert | Lisière route                 | revêtement goudronné, couloir à ciel ouvert ou<br>tunnel sous-bois                                                                                                                                                                                                                               |
|                   |                                      | Lisière piste                 | revêtement non goudronné, couloir à ciel ouvert                                                                                                                                                                                                                                                  |
|                   |                                      | Lisière prairie               | Lisière sur végétation herbacée (culture, prairie, friche)                                                                                                                                                                                                                                       |
|                   | verticalement                        | Lisière eau                   | Lisière sur rivière ou plan d'eau                                                                                                                                                                                                                                                                |
|                   | et/ou<br>latéralement)               | Lisière clairière             | Lisière sur friche arbustive de surface > 500m² env                                                                                                                                                                                                                                              |
|                   |                                      | Lisière trouée                | Lisière sur trouée dans canopée de surface < 500m² env.                                                                                                                                                                                                                                          |
|                   | Chemin ss-bois                       |                               | chemin ou sentier formant tunnel de vol différencié<br>dans sous-bois                                                                                                                                                                                                                            |
|                   | Sous-bois                            |                               | absence de tunnel de vol différencié                                                                                                                                                                                                                                                             |
| N° enreg.         |                                      | Code auteur et n°<br>séquence |                                                                                                                                                                                                                                                                                                  |
| Espèce            |                                      | ,                             | pour les groupes d'espèces : par ordre<br>alphabétique sauf si ordre de probabilité (indiquer<br>dans remarques)                                                                                                                                                                                 |